How Do Politicians Recover Their Costs? The Political Economy of Representative Democracy in India

This paper explores the features of political economy in the dynamics of representative politics in India. Politics is seen as enhancing economic benefits through acquiring and maintenance of power in the realm of democratic set up. The system of representation is riddled with competitive populism. Emerging leaders and parties are forced to accommodate their ideologies in coping with competitive politics. Electoral politics and voting behaviour reflect series of influences mooted by the politicians. Voters are accustomed to expect benefits outs of state exchequer. The electoral competitors show a changing phase of investment and return policy. Every elector has to spend and realize his costs in his tenure. In the case of defeated electors, even the cost recovery is not possible directly; there are indirect means to recover their costs. The series of case studies show the method of party funding, campaign financing, electoral expenditure, and cost recovery. Regulations could not restrict the level of spending. Several cases of disproportionate accumulation of wealth by the politicians reveal that money played a major part in electoral process. The political economy of representative politics hitherto ignores how a politician spends and recovers his cost and multiples his wealth. To be sure, the acquiring and maintenance of power is to enhance the wealth of the electors.

Stereotype Student Model for an Adaptive e-Learning System

This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.

ANN Based Currency Recognition System using Compressed Gray Scale and Application for Sri Lankan Currency Notes - SLCRec

Automatic currency note recognition invariably depends on the currency note characteristics of a particular country and the extraction of features directly affects the recognition ability. Sri Lanka has not been involved in any kind of research or implementation of this kind. The proposed system “SLCRec" comes up with a solution focusing on minimizing false rejection of notes. Sri Lankan currency notes undergo severe changes in image quality in usage. Hence a special linear transformation function is adapted to wipe out noise patterns from backgrounds without affecting the notes- characteristic images and re-appear images of interest. The transformation maps the original gray scale range into a smaller range of 0 to 125. Applying Edge detection after the transformation provided better robustness for noise and fair representation of edges for new and old damaged notes. A three layer back propagation neural network is presented with the number of edges detected in row order of the notes and classification is accepted in four classes of interest which are 100, 500, 1000 and 2000 rupee notes. The experiments showed good classification results and proved that the proposed methodology has the capability of separating classes properly in varying image conditions.

Multiple Organ Manifestation in Neonatal Lupus Erythematous (Report of Two Cases)

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

The Haar Wavelet Transform of the DNA Signal Representation

The Deoxyribonucleic Acid (DNA) which is a doublestranded helix of nucleotides consists of: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). In this work, we convert this genetic code into an equivalent digital signal representation. Applying a wavelet transform, such as Haar wavelet, we will be able to extract details that are not so clear in the original genetic code. We compare between different organisms using the results of the Haar wavelet Transform. This is achieved by using the trend part of the signal since the trend part bears the most energy of the digital signal representation. Consequently, we will be able to quantitatively reconstruct different biological families.

Double Reduction of Ada-ECATNet Representation using Rewriting Logic

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets [2] are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic [12] and its programming language Maude [13]. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems. We proposed in [4] a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet). In this paper, we show that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets (CPNs). Such translation doesn-t reduce only the size of program, but reduces also the number of program states. We show also, how this compact Ada-ECATNet may be reduced again by applying reduction rules on it. This double reduction of Ada-ECATNet permits a considerable minimization of the memory space and run time of corresponding Maude program.

Bangla Vowel Characterization Based on Analysis by Synthesis

Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.

An EOQ Model for Non-Instantaneous Deteriorating Items with Power Demand, Time Dependent Holding Cost, Partial Backlogging and Permissible Delay in Payments

In this paper, Economic Order Quantity (EOQ) based model for non-instantaneous Weibull distribution deteriorating items with power demand pattern is presented. In this model, the holding cost per unit of the item per unit time is assumed to be an increasing linear function of time spent in storage. Here the retailer is allowed a trade-credit offer by the supplier to buy more items. Also in this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This model aids in minimizing the total inventory cost by finding the optimal time interval and finding the optimal order quantity. The optimal solution of the model is illustrated with the help of numerical examples. Finally sensitivity analysis and graphical representations are given to demonstrate the model.

Treatment or Re-Victimizing the Victims

Severe symptoms, such as dissociation, depersonalization, self-mutilation, suicidal ideations and gestures, are the main reasons for a person to be diagnosed with Borderline Personality Disorder (BPD) and admitted to an inpatient Psychiatric Hospital. However, these symptoms are also indicators of a severe traumatic history as indicated by the extensive research on the topic. Unfortunately patients with such clinical presentation often are treated repeatedly only for their symptomatic behavior, while the main cause for their suffering, the trauma itself, is usually left unaddressed therapeutically. All of the highly structured, replicable, and manualized treatments lack the recognition of the uniqueness of the person and fail to respect his/her rights to experience and react in an idiosyncratic manner. Thus the communicative and adaptive meaning of such symptomatic behavior is missed. Only its pathological side is recognized and subjected to correction and stigmatization, and the message that the person is damaged goods that needs fixing is conveyed once again. However, this time the message would be even more convincing for the victim, because it is sent by mental health providers, who have the credibility to make such a judgment. The result is a revolving door of very expensive hospitalizations for only a temporary and patchy fix. In this way the patients, once victims of abuse and hardship are left invalidated and thus their re-victimization is perpetuated in their search for understanding and help. Keywordsborderline personality disorder (BPD), complex PTSD, integrative treatment of trauma, re-victimization of trauma victims.

Comparison of SVC and STATCOM in Static Voltage Stability Margin Enhancement

One of the major causes of voltage instability is the reactive power limit of the system. Improving the system's reactive power handling capacity via Flexible AC transmission System (FACTS) devices is a remedy for prevention of voltage instability and hence voltage collapse. In this paper, the effects of SVC and STATCOM in Static Voltage Stability Margin Enhancement will be studied. AC and DC representations of SVC and STATCOM are used in the continuation power flow process in static voltage stability study. The IEEE-14 bus system is simulated to test the increasing loadability. It is found that these controllers significantly increase the loadability margin of power systems.

On Mobile Checkpointing using Index and Time Together

Checkpointing is one of the commonly used techniques to provide fault-tolerance in distributed systems so that the system can operate even if one or more components have failed. However, mobile computing systems are constrained by low bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life. Hence, checkpointing protocols having lesser number of synchronization messages and fewer checkpoints are preferred in mobile environment. There are two different approaches, although not orthogonal, to checkpoint mobile computing systems namely, time-based and index-based. Our protocol is a fusion of these two approaches, though not first of its kind. In the present exposition, an index-based checkpointing protocol has been developed, which uses time to indirectly coordinate the creation of consistent global checkpoints for mobile computing systems. The proposed algorithm is non-blocking, adaptive, and does not use any control message. Compared to other contemporary checkpointing algorithms, it is computationally more efficient because it takes lesser number of checkpoints and does not need to compute dependency relationships. A brief account of important and relevant works in both the fields, time-based and index-based, has also been included in the presentation.

Discrimination of Alcoholic Subjects using Second Order Autoregressive Modelling of Brain Signals Evoked during Visual Stimulus Perception

In this paper, a second order autoregressive (AR) model is proposed to discriminate alcoholics using single trial gamma band Visual Evoked Potential (VEP) signals using 3 different classifiers: Simplified Fuzzy ARTMAP (SFA) neural network (NN), Multilayer-perceptron-backpropagation (MLP-BP) NN and Linear Discriminant (LD). Electroencephalogram (EEG) signals were recorded from alcoholic and control subjects during the presentation of visuals from Snodgrass and Vanderwart picture set. Single trial VEP signals were extracted from EEG signals using Elliptic filtering in the gamma band spectral range. A second order AR model was used as gamma band VEP exhibits pseudo-periodic behaviour and second order AR is optimal to represent this behaviour. This circumvents the requirement of having to use some criteria to choose the correct order. The averaged discrimination errors of 2.6%, 2.8% and 11.9% were given by LD, MLP-BP and SFA classifiers. The high LD discrimination results show the validity of the proposed method to discriminate between alcoholic subjects.

Connected Vertex Cover in 2-Connected Planar Graph with Maximum Degree 4 is NP-complete

This paper proves that the problem of finding connected vertex cover in a 2-connected planar graph ( CVC-2 ) with maximum degree 4 is NP-complete. The motivation for proving this result is to give a shorter and simpler proof of NP-Completeness of TRA-MLC (the Top Right Access point Minimum-Length Corridor) problem [1], by finding the reduction from CVC-2. TRA-MLC has many applications in laying optical fibre cables for data communication and electrical wiring in floor plans.The problem of finding connected vertex cover in any planar graph ( CVC ) with maximum degree 4 is NP-complete [2]. We first show that CVC-2 belongs to NP and then we find a polynomial reduction from CVC to CVC-2. Let a graph G0 and an integer K form an instance of CVC, where G0 is a planar graph and K is an upper bound on the size of the connected vertex cover in G0. We construct a 2-connected planar graph, say G, by identifying the blocks and cut vertices of G0, and then finding the planar representation of all the blocks of G0, leading to a plane graph G1. We replace the cut vertices with cycles in such a way that the resultant graph G is a 2-connected planar graph with maximum degree 4. We consider L = K -2t+3 t i=1 di where t is the number of cut vertices in G1 and di is the number of blocks for which ith cut vertex is common. We prove that G will have a connected vertex cover with size less than or equal to L if and only if G0 has a connected vertex cover of size less than or equal to K.

Syntax Sensitive and Language Independent Detection of Code Clones

This paper proposes a new technique to detect code clones from the lexical and syntactic point of view, which is based on PALEX source code representation. The PALEX code contains the recorded parsing actions and also lexical formatting information including white spaces and comments. We can record a list of parsing actions (shift, reduce, and reading a token) during a compiling process after a compiler finishes analyzing the source code. The proposed technique has advantages for syntax sensitive approach and language independency.

On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error

This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.

Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

A Norm-based Approach for Profiling Business Knowledge

Knowledge is a key asset for any organisation to sustain competitive advantages, but it is difficult to identify and represent knowledge which is needed to perform activities in business processes. The effective knowledge management and support for relevant business activities definitely gives a huge impact to the performance of the organisation as a whole. This is because that knowledge have the functions of directing, coordinating and controlling actions within business processes. The study has introduced organisational morphology, a norm-based approach by applying semiotic theories which emphasise on the representation of knowledge in norms. This approach is concerned with the identification of activities into three categories: substantive, communication and control activities. All activities are directed by norms; hence three types of norms exist; each is associated to a category of activities. The paper describes the approach briefly and illustrates the application of this approach through a case study of academic activities in higher education institutions. The result of the study shows that the approach provides an effective way to profile business knowledge and the profile enables the understanding and specification of business requirements of an organisation.

Simple Agents Benefit Only from Simple Brains

In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.

A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Topographic Arrangement of 3D Design Components on 2D Maps by Unsupervised Feature Extraction

As a result of the daily workflow in the design development departments of companies, databases containing huge numbers of 3D geometric models are generated. According to the given problem engineers create CAD drawings based on their design ideas and evaluate the performance of the resulting design, e.g. by computational simulations. Usually, new geometries are built either by utilizing and modifying sets of existing components or by adding single newly designed parts to a more complex design. The present paper addresses the two facets of acquiring components from large design databases automatically and providing a reasonable overview of the parts to the engineer. A unified framework based on the topographic non-negative matrix factorization (TNMF) is proposed which solves both aspects simultaneously. First, on a given database meaningful components are extracted into a parts-based representation in an unsupervised manner. Second, the extracted components are organized and visualized on square-lattice 2D maps. It is shown on the example of turbine-like geometries that these maps efficiently provide a wellstructured overview on the database content and, at the same time, define a measure for spatial similarity allowing an easy access and reuse of components in the process of design development.