The Harada Method – A Method for Employee Development during Production Ramp Up

Caused by shorter product life cycles and higher product variety the importance of production ramp ups is increasing. Even though companies are aware of that fact, up to 40% of the ramp up projects still miss technical and economical requirements. The success of a ramp up depends on the planning of human factors, organizational aspects and technological solutions. Since only partly considered in scientific literature, this paper lays its focus on the human factor during production ramp up. There are only incoherent methods which address the problems in this area. A systematic and holistic method to improve the capabilities of the employees during ramp up is missing. The Harada Method is a relatively young approach for developing highly-skilled workers. It consists of different worksheets which help employees to set guidelines and reach overall objectives. This approach is going to be transferred into a tool for ramp up management.

Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure

The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.

The Conceptual Design Model of an Automated Supermarket

The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a winwin situation.

Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in a climatic chamber has been presented. The magnetic moment and magnetic field of the magnets were studied experimentally.

“Moves” for Guiding Presentations in French

Despite four years of study in the tourism industry, the Bachelor’s graduates cannot perform their jobs as experienced tour guides. This research aimed to develop French teaching and studying for Tourism with two main purposes: to analyze ‘Moves’ used in oral presentations at tourist attraction; and to study content in guiding presentations or 'Guide Speak'. The study employed audio recording of these presentations as an interview method in authentic situations, having four tour guides as respondents and information providers. The data was analyzed via moves and content analysis. The results found that there were eight Moves used; namely, Welcoming, Introducing oneself, Drawing someone’s attention, Giving information, Explaining, Highlighting, Persuading and Saying goodbye. In terms of content, the information being presented covered the outstanding characteristics of the places and wellintegrated with other related content. The findings were used as guidelines for curriculum development; in particular, the core content and the presentation forming the basis for students to meet the standard requirements of the labor-market and professional schemes.

Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Inadequate Requirements Engineering Process: A Key Factor for Poor Software Development in Developing Nations: A Case Study

Developing a reliable and sustainable software products is today a big challenge among up–coming software developers in Nigeria. The inability to develop a comprehensive problem statement needed to execute proper requirements engineering process is missing. The need to describe the ‘what’ of a system in one document, written in a natural language is a major step in the overall process of Software Engineering. Requirements Engineering is a process use to discover, analyze and validate system requirements. This process is needed in reducing software errors at the early stage of the development of software. The importance of each of the steps in Requirements Engineering is clearly explained in the context of using detailed problem statement from client/customer to get an overview of an existing system along with expectations from the new system. This paper elicits inadequate Requirements Engineering principle as the major cause of poor software development in developing nations using a case study of final year computer science students of a tertiary-education institution in Nigeria.

Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems

Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.

Implementation of Virtual Reality in the Conceptual Design of a Tractor Trailer

Virtual reality (VR) is a rapidly emerging computer interface that attempts to immerse the user completely within an experimental recreation; thereby, greatly enhancing the overall impact and providing a much more intuitive link between the computer and the human participants. The main objective of this study is to design tractor trailer capable of meeting the customers’ requirements and suitable for rough conditions to be used in combination with a farm tractor in India. The final concept is capable of providing arrangements for attaching the trailer to the tractor easily by pickup hitch, stronger and lighter supporting frame, option of spare tyre etc. Furthermore, the resulting product design can be sent via the Internet to customers for comments or marketing purposes. The virtual prototyping (VP) system therefore facilitates advanced product design and helps reduce product development time and cost significantly.

Legal Problems with the Thai Political Party Establishment

Each of the countries around the world has different ways of management and many of them depend on people to administrate their country. Thailand, for example, empowers the sovereignty of Thai people under constitution; however, our Thai voting system is not able to flow fast enough under the current Political management system. The sovereignty of Thai people is addressing this problem through representatives during current elections, in order to set a new policy for the countries ideology to change in the House and the Cabinet. This is particularly important in a democracy to be developed under our current political institution. The Organic Act on Political Parties 2007 is the establishment we have today that is causing confrontations within the establishment. There are many political parties that will soon be abolished. Many political parties have already been subsidized. This research study is to analyze the legal problems with the political party establishment under the Organic Act on Political Parties 2007. This will focus on the freedom of each political establishment compared to an effective political operation. Textbooks and academic papers will be referenced from studies home and abroad. The study revealed that Organic Act on Political Parties 2007 has strict provisions on the political structure over the number of members and the number of branches involved within political parties system. Such operations shall be completed within one year; but under the existing laws the small parties are not able to participate with the bigger parties. The cities are capable of fulfilling small political party requirements but fail to become coalesced because the current laws won't allow them to be united as one. It is important to allow all independent political parties to join our current political structure. Board members can’t help the smaller parties to become a large organization under the existing Thai laws. Creating a new establishment that functions efficiently throughout all branches would be one solution to these legal problems between all political parties. With this new operation, individual political parties can participate with the bigger parties during elections. Until current political institutions change their system to accommodate public opinion, these current Thai laws will continue to be a problem with all political parties in Thailand.

Ballast Water Management Triad: Administration, Ship Owner and the Seafarer

The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested.

Diversity Management of Gender, Age and Disability in the Banking Sector in the Kingdom of Saudi Arabia

As a developing country, The Kingdom of Saudi Arabia (KSA) needs to make the best possible use of its workforce for social and economic reasons. The workforce is diverse, calling for appropriate diversity management (DM). The thesis focuses on the banking sector in KSA. To date, there have been no studies on DM in the banking sector in this country. Many organizations have introduced specific policies and programmes to improve the recruitment, inclusion, promotion, and retention of diverse employees, in addition to the legal requirements existing in many countries. However, Western-centric models of DM may not be applicable, at least not in their entirety, in other regions. The aim of the study is to devise a framework for understanding gender, age and disability DM in the banking sector in KSA in order to enhance DM in this sector. A sample of 24 managers, 2 from each of the 12 banks, was interviewed to obtain their views on DM in the banking sector in KSA. Thematic analysis was used to analyze the data. These themes were used to develop the questionnaire, which was administered to 10 managers in each of the 12 banks. After analysis of these data, and completion of the study, the research will make a theoretical contribution to the knowledge on DM and a practical contribution to the management of diversity in Saudi banks. This paper concerns a work in progress.

A Survey of IMRT and VMAT in UK

Purpose: This E-survey was carried out to facilitate the implementation and Education of VMAT (Volumetric Modulated Arc Therapy) in Radiotherapy-RT departments and reasons for not using IMRT (Intensity Modulated Radiotherapy). VMAT Skills in demand were also identified. Method: E-Survey was distributed to NHS hospitals across UK by email. Thirty NHS and related centres in England, 21 in Scotland, 3 in Ireland and 1 in Wales were contacted. This Survey was intended for those working in RT and Medical Physics and who were responsible for Treatment Planning and training. Results: This E-survey have indicated pathways adopted by staff to acquire VMAT skills, strategies to efficiently implement VMAT in RT departments and for obtaining VMAT Education. Conclusion: Despite poor survey response this survey has managed to highlight requirements for education and implementation of VMAT that are also applicable to IMRT. Other RT centres in world can also find these results useful.

Structural Analysis of a Composite Wind Turbine Blade

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Searchable Encryption in Cloud Storage

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Determinants of Service Quality on Thai Passengers’ Repeated Purchase of Domestic Flight Service with Thai Airways International

This research paper aimed to identify determinants of airline service quality on passengers’ repeated purchase of service. The population of this study was Thai passengers flying domestic flights with Thai Airways, making a total of 300 samples. These 300 samples participated in this research by answering a collection of questions by means of a questionnaire. An analysis of means score and multiple regression revealed that perceived service quality for tangible elements, reliability, responsiveness, assurance and empathy had determined repeated purchase of flight service of the passengers at a high level. Moreover, reliability and responsiveness factors could predict the passengers’ repeated purchase of flight service at the percentage of 30.6. The findings gave a signal that Thai Airways may consider a development of route network and fleet strategy as well as an establishment of aircraft and seat qualification to meet passengers’ needs and requirements. Passengers’ level of satisfaction could also be maximized by offering service value through various kinds of special deals and programs, whereas value- added pricing strategy should be considered in order to differentiate from and beat other leading airline competitors.

Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.