sEMG Interface Design for Locomotion Identification

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Image Rotation Using an Augmented 2-Step Shear Transform

Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.

Accelerating the Uptake of Smart City Applications through Cloud Computing

Smart cities are high on the political agenda around the globe. However, planning smart cities and deploying applications dealing with the complex problems of the urban environment is a very challenging task that is difficult to be undertaken solely by the cities. We argue that the uptake of smart city strategies is facilitated, first, through the development of smart city application repositories allowing re-use of already developed and tested software, and, second, through cloud computing which disengages city authorities from any resource constraints, technical or financial, and has a higher impact and greater effect at the city level The combination of these two solutions allows city governments and municipalities to select and deploy a large number of applications dedicated to different city functions, which collectively could create a multiplier effect with a greater impact on the urban environment.

Improving Utilization of Sugarcane by Replacing Ordinary Propagation Material with Small Chips of Sugarcane Planted in Paper Pots

Sugarcane is an important resource for bioenergy. Fields are usually established by using 15-20 cm pieces of sugarcane stalks as propagation material. An alternative method is to use small chips with nodes from sugarcane stalks. Plants from nodes are often established in plastic pots, but plastic pots could be replaced with biodegradable paper pots. This would be a more sustainable solution, reducing labor costs and avoiding pollution with plastic. We compared the establishment of plants from nodes taken from three different part of the sugarcane plant. The nodes were planted in plastic and paper pots. There was no significant difference between plants established in the two pot types. Nodes from different part of the stalk had different sprouting capacity. Nodes from the top parts sprouted significantly better than nodes taken from the middle or nodes taken closed to the ground in two experiments. Nodes with a length of 3 cm performed better than nodes with a length of 2 cm.

Nebulized Magnesium Sulfate in Acute Moderate to Severe Asthma in Pediatric Patients

A prospective double-blind placebo controlled trial carried out on 60 children known to be asthmatic who presented to the emergency department at Alexandria University of Children’s Hospital at El-Shatby with acute asthma exacerbations to assess the efficacy of adding inhaled magnesium sulfate to β-agonist, compared with β-agonist in saline, in the management of acute asthma exacerbations in children. The participants in the study were divided in two groups; Group A (study group) received inhaled salbutamol solution (0.15 ml/kg) plus isotonic magnesium sulfate 2 ml in a nebulizer chamber. Group B (control group): received nebulized salbutamol solution (0.15 ml/kg) diluted with placebo (2 ml normal saline). Both groups received inhaled solution every 20 minutes that was repeated for three doses. They were evaluated using the Pediatric Asthma Severity Score (PASS), oxygen saturation using portable pulse oximetry and peak expiratory flow rate using a portable peak expiratory flow meter at initially recorded as zero-minute assessment and every 20 minutes from the end of each nebulization (nebulization lasts 5-10 minutes) recorded as 20, 40 and 60-minute assessments. Regarding PASS, comparison showed non-significant difference with p-value 0.463, 0.472, 0.0766 at 20, 40 and 60 minutes. Regarding oxygen saturation, improvement was more significant towards group A starting from 40 min with significant p-value=0.000. At 60 min p-value=0.000. Although mean PEFR significantly improved from zero-min in both groups; however, improvement was more significant in group A with significant p-value = 0.015, 0.001, 0.001 at 20 min, 40 min and 60 min, respectively. The conclusion this study suggests is that inhaled magnesium sulfate is an efficient add on drug to standard β- agonist inhalation used in the treatment of moderate to severe asthma exacerbations.

Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites

This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.

Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique

Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.

Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9

Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters.  After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).

Computing Continuous Skyline Queries without Discriminating between Static and Dynamic Attributes

Although most of the existing skyline queries algorithms focused basically on querying static points through static databases; with the expanding number of sensors, wireless communications and mobile applications, the demand for continuous skyline queries has increased. Unlike traditional skyline queries which only consider static attributes, continuous skyline queries include dynamic attributes, as well as the static ones. However, as skyline queries computation is based on checking the domination of skyline points over all dimensions, considering both the static and dynamic attributes without separation is required. In this paper, we present an efficient algorithm for computing continuous skyline queries without discriminating between static and dynamic attributes. Our algorithm in brief proceeds as follows: First, it excludes the points which will not be in the initial skyline result; this pruning phase reduces the required number of comparisons. Second, the association between the spatial positions of data points is examined; this phase gives an idea of where changes in the result might occur and consequently enables us to efficiently update the skyline result (continuous update) rather than computing the skyline from scratch. Finally, experimental evaluation is provided which demonstrates the accuracy, performance and efficiency of our algorithm over other existing approaches.

Factors Affecting Students’ Performance in Chemistry: Case Study in Zanzibar Secondary Schools

The purpose of this study was to investigate the performance of chemistry in Zanzibar Secondary Schools. It was conducted in all regions of Zanzibar in public and private secondary schools and Ministry of Education officials. The objective of the study included finding out causes of poor performance in chemistry. Views, opinions, and suggestions of teachers and students to improve performance of chemistry and a descriptive survey was adopted for the study. 45 teachers and 200 students were randomly sampled from 15 secondary schools in Zanzibar and ten Ministry of Education officials were purposively sampled for the study. Questionnaires and open-ended interview schedules were the main instruments used in obtaining relevant data from respondents. Data collected from the field was analyzed both qualitatively and quantitatively. Qualitative analysis involved content analysis of the responses obtained through interviews and quantitative analysis involved generation of tables, frequencies and percentages. The results revealed that there were shortages of trained teachers, lack of proficiency in the language of instruction (English) and major facilities like laboratories and books. These led to poor delivery of subject matter and consequently resulting in poor performance. Based on the findings, this study recommends that provision of trained, competent, and effective teachers as vital aspects to be considered. Government through Ministry of Education should put effort to stalk libraries and equip laboratories with modern books and instruments. In addition, the ministry should strengthen teachers’ training and encourage use of instructional media in class and make conducive learning environment to both teachers and students.

Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction

Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.

Dynamic Model of Automatic Loom on SimulationX

One of the main tasks in the development of textile machinery is to increase the rapidity of automatic looms, and consequently, their productivity. With increasing automatic loom speeds, the dynamic loads on their separate mechanisms and moving joints sharply increase. Dynamic research allows us to determine the weakest mechanisms of the automatic loom. The modern automatic loom consists of a large number of structurally different mechanisms. These are cam, lever, gear, friction and combined cyclic mechanisms. The modern automatic loom contains various mechatronic devices: A device for the automatic removal of faulty weft, electromechanical drive warp yarns, electronic controllers, servos, etc. In the paper, we consider the multibody dynamic model of the automatic loom on the software complex SimulationX. SimulationX is multidisciplinary software for modeling complex physical and technical facilities and systems. The multibody dynamic model of the automatic loom allows consideration of: The transition processes, backlash at the joints and nodes, the force of resistance and electric motor performance.

Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

A Programming Assessment Software Artefact Enhanced with the Help of Learners

The demands of an ever changing and complex higher education environment, along with the profile of modern learners challenge current approaches to assessment and feedback. More learners enter the education system every year. The younger generation expects immediate feedback. At the same time, feedback should be meaningful. The assessment of practical activities in programming poses a particular problem, since both lecturers and learners in the information and computer science discipline acknowledge that paper-based assessment for programming subjects lacks meaningful real-life testing. At the same time, feedback lacks promptness, consistency, comprehensiveness and individualisation. Most of these aspects may be addressed by modern, technology-assisted assessment. The focus of this paper is the continuous development of an artefact that is used to assist the lecturer in the assessment and feedback of practical programming activities in a senior database programming class. The artefact was developed using three Design Science Research cycles. The first implementation allowed one programming activity submission per assessment intervention. This pilot provided valuable insight into the obstacles regarding the implementation of this type of assessment tool. A second implementation improved the initial version to allow multiple programming activity submissions per assessment. The focus of this version is on providing scaffold feedback to the learner – allowing improvement with each subsequent submission. It also has a built-in capability to provide the lecturer with information regarding the key problem areas of each assessment intervention.

Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Electrochemical Performance of Al-Mn2O3 Based Electrode Materials

Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.

Performance Evaluation of Refinement Method for Wideband Two-Beams Formation

This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.

Thermal Effect on Wave Interaction in Composite Structures

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Wave Interaction with Defects in Pressurized Composite Structures

A wave finite element (WFE) and finite element (FE) based computational method is presented by which the dispersion properties as well as the wave interaction coefficients for one-dimensional structural system can be predicted. The structural system is discretized as a system comprising a number of waveguides connected by a coupling joint. Uniform nodes are ensured at the interfaces of the coupling element with each waveguide. Then, equilibrium and continuity conditions are enforced at the interfaces. Wave propagation properties of each waveguide are calculated using the WFE method and the coupling element is modelled using the FE method. The scattering of waves through the coupling element, on which damage is modelled, is determined by coupling the FE and WFE models. Furthermore, the central aim is to evaluate the effect of pressurization on the wave dispersion and scattering characteristics of the prestressed structural system compared to that which is not prestressed. Numerical case studies are exhibited for two waveguides coupled through a coupling joint.

Mercury and Selenium Levels in Swordfish (Xiphias gladius) Fished in the Exclusive Economic Zone of the Republic of Seychelles

Total mercury (Hg), selenium (Se) and Hg-Se ratios were analyzed in the white muscle, liver and gonads of swordfish, in order to compare concentration between the different tissues and sex, and also the effect of size (fork length). The results show significant difference between tissue types, with the liver having the highest concentration of both Hg and Se. Positive significant correlations between moles of Hg and Se were obtained in the liver and white muscle, but no relationship was obtained in the gonads. No difference in the concentration of Hg and Se was obtained between the sexes in the tissue types, except for Hg in the gonads, which were found to be higher in males. Significant negative relationships were obtained when the Hg-Se ratio was plotted against fork length in all three tissue types.