The Role of Product Involvement Level in Consumer Tendency toward Online Review

The paper aims to clarify the relationship between product involvement level and consumer tendency toward online review. It proposes the products in two classes and examines the level of user attention and significant difference between attribute-based areas and experience-based areas in each category. It uses an eye-tracking experiment to simulate the experience of online shopping behavior in order to view the consumers' shopping behavior. Thus, a scenario was designed, and 23 participants were asked step by step to purchase some products and add them to their shopping cart. The fixation durations are used to examine the amount of visual attention of the user in each area of interest (AOI) determined considering two classes of high involvement and low involvement products, and paired sample T-test was used to examine the effect of the product’s types on the online review content. The study results explained that users of high involvement products consider the attribute-based points more highly than the experience-based points.

Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.