Influence of Hydrolytic Degradation on Properties of Moisture Membranes Used in Fire-Protective Clothing

This study intends to show the influence of the hydrolytic degradation on the properties of the e-PTFE/NOMEX® membranes used in fire-protective clothing. The modification of water vapour permeability, morphology and chemical structure was examined by MOCON Permatran, electron microscopy scanning (SEM), and ATR-FTIR, respectively. A decrease in permeability to water vapour of the aged samples was observed following closure of transpiration pores. Analysis of fiber morphology indicates the appearance of defects at the fibers surface with the presence of micro cavities. ATR-FTIR analysis reveals the presence of a new absorption band attributed to carboxylic acid terminal groups generated during the amide bond hydrolysis.

A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sands and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performances of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at 10% and 20% replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at 20% replacement levels was effective in mitigating expansions.

Screening Post-Menopausal Women for Osteoporosis by Complex Impedance Measurements of the Dominant Arm

Cole-Cole parameters of 40 post-menopausal women are compared with their DEXA bone mineral density measurements. Impedance characteristics of four extremities are compared; left and right extremities are statistically same, but lower extremities are statistically different than upper ones due to their different fat content. The correlation of Cole-Cole impedance parameters to bone mineral density (BMD) is observed to be higher for dominant arm. With the post-menopausal population, ANOVA tests of the dominant arm characteristic frequency, as a predictor for DEXA classified osteopenic and osteoporic population around lumbar spine, is statistically very significant. When used for total lumbar spine osteoporosis diagnosis, the area under the Receiver Operating Curve of the characteristic frequency is 0.830, suggesting that the Cole-Cole plot characteristic frequency could be a useful diagnostic parameter when integrated into standard screening methods for osteoporosis. Moreover, the characteristic frequency can be directly measured by monitoring frequency driven angular behavior of the dominant arm without performing any complex calculation.

Personas Help Understand Users’ Needs, Goals and Desires in an Online Institutional Repository

Communicating users' needs, goals and problems help designers and developers overcome challenges faced by end users. Personas are used to represent end users’ needs. In our research, creating personas allowed the following questions to be answered: Who are the potential user groups? What do they want to achieve by using the service? What are the problems that users face? What should the service provide to them? To develop realistic personas, we conducted a focus group discussion with undergraduate and graduate students and also interviewed a university librarian. The personas were created to help evaluating the Institutional Repository that is based on the DSpace system. The profiles helped to communicate users' needs, abilities, tasks, and problems, and the task scenarios used in the heuristic evaluation were based on these personas. Four personas resulted of a focus group discussion with undergraduate and graduate students and from interviewing a university librarian. We then used these personas to create focused task-scenarios for a heuristic evaluation on the system interface to ensure that it met users' needs, goals, problems and desires. In this paper, we present the process that we used to create the personas that led to devise the task scenarios used in the heuristic evaluation as a follow up study of the DSpace university repository.

Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

In this study, an Artificial Neural Network (ANN) analytical method has been developed for analyzing earthquake performances of the Reinforced Concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Studying Frame-Resistant Steel Structures under near Field Ground Motion

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars

Fiber Reinforced Polymer (FRP) is a composite material with exceptional properties that are capable to replace conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars are limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity.

Performance Evaluation of Single Basin Solar Still

In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square metre aperture area and annual performance ratio for single basin solar still is 1095 litres and 0.43 respectively. The payback period for micro-stepped solar still is 2.5 years.

Application of Moringa oleifera Seed in Removing Colloids from Turbid Wastewater

The present study aims to investigate the performance of Moringa oleifera seed extract as natural coagulant in clarification of secondary wastewater treatment plant (MWWTP) located in East of Algiers, Algeria. Coagulation flocculation performance of Moringa oleifera was evaluated through supernatant residual turbidity after jar test trials. Various influence parameters namely Moringa oleifera dosage and pH have been considered. Tests on Reghaia wastewater, having 129 NTU of initial turbidity, showed a removal of 69.45% of residual turbidity with only 1.5 mg/l of Moringa oleifera. This sufficient removal capability encourages the use of this bioflocculant for treatment of turbid waters. Indeed, Moringa oleifera which is a natural resource available locally (South of Algeria) coupled to the non-toxicity, biocompatibility and biodegradability, may be a very interesting alternative to the conventional coagulants used so far.

Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

The Role of Ionic Strength and Mineral Size to Zeta Potential for the Adhesion of P. putida to Mineral Surfaces

Electrostatic interaction energy (ΔEEDL) is a part of the Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, which, together with van der Waals (ΔEVDW) and acid base (ΔEAB) interaction energies, has been extensively used to investigate the initial adhesion of bacteria to surfaces. Electrostatic or electrical double layer interaction energy is considerably affected by surface potential; however it cannot be determined experimentally and is usually replaced by zeta (ζ) potential via electrophoretic mobility. This paper focusses on the effect of ionic concentration as a function of pH and the effect of mineral grain size on ζ potential. It was found that both ionic strength and mineral grain size play a major role in determining the value of ζ potential for the adhesion of P. putida to hematite and quartz surfaces. Higher ζ potential values lead to higher electrostatic interaction energies and eventually to higher total XDLVO interaction energy resulting in bacterial repulsion.

Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

The Effect of Vertical Shear-Link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Tonal Pitch Structure as a Tool of Social Consolidation

This paper proposes that in the course of evolution pitch structure became a human specific tool of communication the function of which is to induce emotional states such as uncertainty and cohesion. By the means of eliciting these emotions during collective music performance people are able to unconsciously give cues concerning social acceptance. This is probably one of the reasons why in all cultures people collectively perform tonal music. It is also suggested that tonal pitch structure had been invented socially before it became an evolutionary innovation of hominines. It means that a predisposition to tonally organize pitches evolved by the means of ‘Baldwin effect’ – a process in which natural selection transforms the learned response of an organism into the instinctive response. In the proposed, hypothetical evolutionary scenario of the emergence of tonal pitch structure social forces such as a need for closer cooperation play the crucial role.

Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene

Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on dewrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has significant effect on de-wrinkling whereas SDS had minimal effect on the dewrinkling of graphene.

Angle of Arrival Estimation Using Maximum Likelihood Method

Multiple-input multiple-output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection,resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO uniformly-spaced linear array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, pseudo random (PN) sequence length, number of snapshots, and signal to noise ratio (SNR). The results of MIMO are compared to a traditional array antenna.

Studies on Pre-Ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

In this paper numerical studies have been carried out to examine the pre-ignition flow features of high-performance solid propellant rocket motors with two different port geometries but with same propellant loading density. Numerical computations have been carried out using a validated 3D, unsteady, 2nd-order implicit, SST k- ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create preignition pressure oscillations leading to thrust oscillations due to the flow unsteadiness and recirculation. We have also observed that the igniter temperature fluctuations are diminished rapidly thereby reaching the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.