A Thought on Exotic Statistical Distributions

The statistical distributions are modeled in explaining nature of various types of data sets. Although these distributions are mostly uni-modal, it is quite common to see multiple modes in the observed distribution of the underlying variables, which make the precise modeling unrealistic. The observed data do not exhibit smoothness not necessarily due to randomness, but could also be due to non-randomness resulting in zigzag curves, oscillations, humps etc. The present paper argues that trigonometric functions, which have not been used in probability functions of distributions so far, have the potential to take care of this, if incorporated in the distribution appropriately. A simple distribution (named as, Sinoform Distribution), involving trigonometric functions, is illustrated in the paper with a data set. The importance of trigonometric functions is demonstrated in the paper, which have the characteristics to make statistical distributions exotic. It is possible to have multiple modes, oscillations and zigzag curves in the density, which could be suitable to explain the underlying nature of select data set.

Fuzzy Logic PID Control of Automatic Voltage Regulator System

The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.

Health Risk Assessment in Lead Battery Smelter Factory: A Bayesian Belief Network Method

This paper proposes the use of Bayesian belief networks (BBN) as a higher level of health risk assessment for a dumping site of lead battery smelter factory. On the basis of the epidemiological studies, the actual hospital attendance records and expert experiences, the BBN is capable of capturing the probabilistic relationships between the hazardous substances and their adverse health effects, and accordingly inferring the morbidity of the adverse health effects. The provision of the morbidity rates of the related diseases is more informative and can alleviate the drawbacks of conventional methods.

Experimental Study of the Metal Foam Flow Conditioner for Orifice Plate Flowmeters

The sensitivity of orifice plate metering to disturbed flow (either asymmetric or swirling) is a subject of great concern to flow meter users and manufacturers. The distortions caused by pipe fittings and pipe installations upstream of the orifice plate are major sources of this type of non-standard flows. These distortions can alter the accuracy of metering to an unacceptable degree. In this work, a multi-scale object known as metal foam has been used to generate a predetermined turbulent flow upstream of the orifice plate. The experimental results showed that the combination of an orifice plate and metal foam flow conditioner is broadly insensitive to upstream disturbances. This metal foam demonstrated a good performance in terms of removing swirl and producing a repeatable flow profile within a short distance downstream of the device. The results of using a combination of a metal foam flow conditioner and orifice plate for non-standard flow conditions including swirling flow and asymmetric flow show this package can preserve the accuracy of metering up to the level required in the standards.

Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory

A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.

Fabricating Protruded Micro-features on AA6061 Substrates by Hot Embossing Method

Metallic micro parts are playing an important role in micro-fabrication industry. Recently, we have demonstrated a new deformation mechanism for micro-formability of polycrystalline materials. Different depressed micro-features smaller than the grain size have been successfully fabricated on 6061 aluminum alloy (AA6061) substrates with good fidelity. To further verify this proposed deformation mechanism that grain size is not a limiting factor, we demonstrate here that in addition of depressed features, protruded micro-features on a polycrystalline substrate can similarly be fabricated.

Preemptive Possibilistic Linear Programming:Application to Aggregate Production Planning

This research proposes a Preemptive Possibilistic Linear Programming (PPLP) approach for solving multiobjective Aggregate Production Planning (APP) problem with interval demand and imprecise unit price and related operating costs. The proposed approach attempts to maximize profit and minimize changes of workforce. It transforms the total profit objective that has imprecise information to three crisp objective functions, which are maximizing the most possible value of profit, minimizing the risk of obtaining the lower profit and maximizing the opportunity of obtaining the higher profit. The change of workforce level objective is also converted. Then, the problem is solved according to objective priorities. It is easier than simultaneously solve the multiobjective problem as performed in existing approach. Possible range of interval demand is also used to increase flexibility of obtaining the better production plan. A practical application of an electronic company is illustrated to show the effectiveness of the proposed model.

Lower energy Gait Pattern Generation in 5-Link Biped Robot Using Image Processing

The purpose of this study is to find natural gait of biped robot such as human being by analyzing the COG (Center Of Gravity) trajectory of human being's gait. It is discovered that human beings gait naturally maintain the stability and use the minimum energy. This paper intends to find the natural gait pattern of biped robot using the minimum energy as well as maintaining the stability by analyzing the human's gait pattern that is measured from gait image on the sagittal plane and COG trajectory on the frontal plane. It is not possible to apply the torques of human's articulation to those of biped robot's because they have different degrees of freedom. Nonetheless, human and 5-link biped robots are similar in kinematics. For this, we generate gait pattern of the 5-link biped robot by using the GA algorithm of adaptation gait pattern which utilize the human's ZMP (Zero Moment Point) and torque of all articulation that are measured from human's gait pattern. The algorithm proposed creates biped robot's fluent gait pattern as that of human being's and to minimize energy consumption because the gait pattern of the 5-link biped robot model is modeled after consideration about the torque of human's each articulation on the sagittal plane and ZMP trajectory on the frontal plane. This paper demonstrate that the algorithm proposed is superior by evaluating 2 kinds of the 5-link biped robot applied to each gait patterns generated both in the general way using inverse kinematics and in the special way in which by considering visuality and efficiency.

Dimensioning of Subsynchronous Cascade for Speed Regulation of Two-Motors 6kv Conveyer Drives

One way for optimum loading of overdimensioning conveyers is speed (capacity) decrement, with attention for production capabilities and demands. At conveyers which drives with three phase slip-ring induction motor, technically reasonable solution for conveyer (driving motors) speed regulation is using constant torque subsynchronous cascade with static semiconductor converter and transformer for energy reversion to the power network. In the paper is described mathematical model for parameter calculation of two-motors 6 kV subsynchronous cascade. It is also demonstrated that applying of this cascade gave several good properties, foremost in electrical energy saving, also in improving of other energy indexes, and finally that results in cost reduction of complete electrical motor drive.

Patents Analysis and Design Suggestions for the Mandibular Advancement Devices

Snoring is prevalent and is the most significant feature of sleep-disordered breathing (SDB). Ignore the therapies of SDB will lead to serious problems in health. Based on the research of mechanisms, diagnosis, and treatments of snoring, oral appliances are ensured in therapeutic effect and compliance, especially the mandibular advancement devices (MADs). Market survey includes commercial product reviews and patent analyses. Due to pay more attention to the sleep medicine, the oral appliances are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). There are more and more adjustable MADs developed since 1995. According to the patent analyses, there are many drawbacks existed in the present design, such as uncomfortable, high cost, bulky volume, and complex adjustment. In this study, several new designs of the MAD are proposed.

Efficient and Extensible Data Processing Framework in Ubiquitious Sensor Networks

This paper presents the design and implements the prototype of an intelligent data processing framework in ubiquitous sensor networks. Much focus is put on how to handle the sensor data stream as well as the interoperability between the low-level sensor data and application clients. Our framework first addresses systematic middleware which mitigates the interaction between the application layer and low-level sensors, for the sake of analyzing a great volume of sensor data by filtering and integrating to create value-added context information. Then, an agent-based architecture is proposed for real-time data distribution to efficiently forward a specific event to the appropriate application registered in the directory service via the open interface. The prototype implementation demonstrates that our framework can host a sophisticated application on the ubiquitous sensor network and it can autonomously evolve to new middleware, taking advantages of promising technologies such as software agents, XML, cloud computing, and the like.

Energy Efficient Reliable Cooperative Multipath Routing in Wireless Sensor Networks

In this paper, a reliable cooperative multipath routing algorithm is proposed for data forwarding in wireless sensor networks (WSNs). In this algorithm, data packets are forwarded towards the base station (BS) through a number of paths, using a set of relay nodes. In addition, the Rayleigh fading model is used to calculate the evaluation metric of links. Here, the quality of reliability is guaranteed by selecting optimal relay set with which the probability of correct packet reception at the BS will exceed a predefined threshold. Therefore, the proposed scheme ensures reliable packet transmission to the BS. Furthermore, in the proposed algorithm, energy efficiency is achieved by energy balancing (i.e. minimizing the energy consumption of the bottleneck node of the routing path) at the same time. This work also demonstrates that the proposed algorithm outperforms existing algorithms in extending longevity of the network, with respect to the quality of reliability. Given this, the obtained results make possible reliable path selection with minimum energy consumption in real time.

Application of Quality Index Method, Texture Measurements and Electronic Nose to Assess the Freshness of Atlantic Herring (Clupea harengus) Stored in Ice

Atlantic herring (Clupea harengus) is an important commercial fish and shows to be more and more demanded for human consumption. Therefore, it is very important to find good methods for monitoring the freshness of the fish in order to keep it in the best quality for human consumption. In this study, the fish was stored in ice up to 2 weeks. Quality changes during storage were assessed by the Quality Index Method (QIM), quantitative descriptive analysis (QDA) and Torry scheme, by texture measurements: puncture tests and Texture Profile Analysis (TPA) tests on texture analyzer TA.XT2i, and by electronic nose (e-nose) measurements using FreshSense instrument. Storage time of herring in ice could be estimated by QIM with ± 2 days using 5 herring per lot. No correlation between instrumental texture parameters and storage time or between sensory and instrumental texture variables was found. E-nose measurements could be use to detect the onset of spoilage.

Analysis of the Islands Tourists, Destination Information Sources and Service Satisfaction

The purpose of this study is to analyze the islands tourist travel information sources, as well as for the satisfaction of the tourist destination services. This study used questionnaires to the island of Taiwan to the Penghu Islands to engage in tourism activities tourist adopt the designated convenience sampling method, a total of 889 valid questionnaires were collected. After statistical analysis, this study found that: 1. tourists to the Penghu Islands travel information source for “friends and family came to Penghu". 2. Tourists feel the service of the outlying islands of Penghu, the highest feelings of “friendly local residents". 3. There are different demographic variables affect the tourist travel information source and service satisfaction. Based on the findings of this study not only for Penghu's tourism industry with the unit in charge of the proposed operating and suggestions for future research to other researchers.

Power System Contingency Analysis Using Multiagent Systems

The demand of the energy management systems (EMS) set forth by modern power systems requires fast energy management systems. Contingency analysis is among the functions in EMS which is time consuming. In order to handle this limitation, this paper introduces agent based technology in the contingency analysis. The main function of agents is to speed up the performance. Negotiations process in decision making is explained and the issue set forth is the minimization of the operating costs. The IEEE 14 bus system and its line outage have been used in the research and simulation results are presented.

Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Evaluation of Water Quality of the Beshar River

The Beshar River is one aquatic ecosystem, which is located next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial factories such as effluent of sugar factory, agricultural and other activities in this region such as, Imam Sajjad hospital, drainage from agricultural farms, Yasuj urban surface runoff and effluent of wastewater treatment plants ,specially Yasuj waste water treatment plant. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analyzed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2010. The study shows that the BOD5 value of station 1 is at a minimum (1.7 ppm) and increases downstream from stations 2 to 4 to a maximum (11.6 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (8.45 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.1 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations .This study shows average amount of the water quality parameters in first year of sampling (2008) have had a better quality relation to third year in 2010 because of recent drought in this region and pollutant increasing .As the Beshar river path after 5th station goes through the mountain area with more slope and flow velocity ,so the physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference

Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.

Mineral and Some Physico-Chemical Composition of 'Karayemis' (Prunus laurocerasus L.) Fruits Grown in Northeast Turkey

Some physico-chemical characteristics and mineral composition of 'Karayemis' (Prunus laurocerasus L.) fruits which grown naturally in Norteast Turkey was studied. 28 minerals ( Al, Mg, B, Mn, Co, Na, Ca, Ni, Cd, P, Cr, Pb, Cu, S, Fe, Zn, K, Sr, Li, As, V, Ag, Ba, Br, Ga, In, Se, Ti) were analyzed and 19 minerals were present at ascertainable levels. Karayemis fruit was richest in potassium (7938.711 ppm), magnesium (1242.186 ppm) and calcium (1158.853 ppm). And some physico-chemical characteristics of Karayemis fruit was investigated. Fruit length, fruit width, fruit thickness, fruit weight, total soluble solids, colour, protein, crude ash, crude fiber, crude oil values were determined as 2.334 cm, 1.884 cm, 2.112 cm, 5.35 g, 20.1 %, S99M99Y99, 0.29 %, 0.22 %, 6.63 % and 0.001 %, respectively. The seed of fruit mean weight, length, width and thickness were found to be 0.41 g, 1.303 cm, 0.921 cm and 0.803, respectively.

Optimal Design of UPFC Based Damping Controller Using Iteration PSO

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.