The Application of HLLC Numerical Solver to the Reduced Multiphase Model

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Wind Speed Data Analysis using Wavelet Transform

Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.

Inclusion of Enterococcus Faecalis and Enterococcus Faecium to UF White Cheese

Lighvan cheese is basically made from sheep milk in the area of Sahand mountainside which is located in the North West of Iran. The main objective of this study was to investigate the effect of enterococci isolated from traditional Lighvan cheese on the quality of Iranian UF white during ripening. The experimental design was split plot based on randomized complete blocks, main plots were four types of starters and subplots were different ripening durations. Addition of Enterococcus spp. did not significantly (P

Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.

Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.

Neural Network Imputation in Complex Survey Design

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

An Assessment of Technological Competencies on Professional Service Firms Business Performance

This study was initiated with a three prong objective. One, to identify the relationship between Technological Competencies factors (Technical Capability, Firm Innovativeness and E-Business Practices and professional service firms- business performance. To investigate the predictors of professional service firms business performance and finally to evaluate the predictors of business performance according to the type of professional service firms, a survey questionnaire was deployed to collect empirical data. The questionnaire was distributed to the owners of the professional small medium size enterprises services in the Accounting, Legal, Engineering and Architecture sectors. Analysis showed that all three Technology Competency factors have moderate effect on business performance. In addition, the regression models indicate that technical capability is the most highly influential that could determine business performance, followed by e-business practices and firm innovativeness. Subsequently, the main predictor of business performance for all types of firms is Technical capability.

Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction

Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit.

Absorption of Volatile Organic Compounds into Polydimethylsiloxane: Phase Equilibrium Computation at Infinite Dilution

Group contribution methods such as the UNIFAC are very useful to researchers and engineers involved in synthesis, feasibility studies, design and optimization of separation processes. They can be applied successfully to predict phase equilibrium and excess properties in the development of chemical and separation processes. The main focus of this work was to investigate the possibility of absorbing selected volatile organic compounds (VOCs) into polydimethylsiloxane (PDMS) using three selected UNIFAC group contribution methods. Absorption followed by subsequent stripping is the predominant available abatement technology of VOCs from flue gases prior to their release into the atmosphere. The original, modified and effective UNIFAC models were used in this work. The thirteen selected VOCs that have been considered in this research are: pentane, hexane, heptanes, trimethylamine, toluene, xylene, cyclohexane, butyl acetate, diethyl acetate, chloroform, acetone, ethyl methyl ketone and isobutyl methyl ketone. The computation was done for solute VOC concentration of 8.55x10-8 which is well in the infinite dilution region. The results obtained in this study compare very well with those published in literature obtained through both measurements and predictions. The phase equilibrium obtained in this study show that PDMS is a good absorbent for the removal of VOCs from contaminated air streams through physical absorption.

Compton Scattering of Annihilation Photons as a Short Range Quantum Key Distribution Mechanism

The angular distribution of Compton scattering of two quanta originating in the annihilation of a positron with an electron is investigated as a quantum key distribution (QKD) mechanism in the gamma spectral range. The geometry of coincident Compton scattering is observed on the two sides as a way to obtain partially correlated readings on the quantum channel. We derive the noise probability density function of a conceptually equivalent prepare and measure quantum channel in order to evaluate the limits of the concept in terms of the device secrecy capacity and estimate it at roughly 1.9 bits per 1 000 annihilation events. The high error rate is well above the tolerable error rates of the common reconciliation protocols; therefore, the proposed key agreement protocol by public discussion requires key reconciliation using classical error-correcting codes. We constructed a prototype device based on the readily available monolithic detectors in the least complex setup.

MIMO Antenna Selections using CSI from Reciprocal Channel

It is well known that the channel capacity of Multiple- Input-Multiple-Output (MIMO) system increases as the number of antenna pairs between transmitter and receiver increases but it suffers from multiple expensive RF chains. To reduce the cost of RF chains, Antenna Selection (AS) method can offer a good tradeoff between expense and performance. In a transmitting AS system, Channel State Information (CSI) feedback is necessarily required to choose the best subset of antennas in which the effects of delays and errors occurred in feedback channels are the most dominant factors degrading the performance of the AS method. This paper presents the concept of AS method using CSI from channel reciprocity instead of feedback method. Reciprocity technique can easily archive CSI by utilizing a reverse channel where the forward and reverse channels are symmetrically considered in time, frequency and location. In this work, the capacity performance of MIMO system when using AS method at transmitter with reciprocity channels is investigated by own developing Testbed. The obtained results show that reciprocity technique offers capacity close to a system with a perfect CSI and gains a higher capacity than a system without AS method from 0.9 to 2.2 bps/Hz at SNR 10 dB.

Preparation of Size Controlled Silver on Carbon from E-waste by Chemical and Electro-Kinetic Processes

Preparation of size controlled nano-particles of silver catalyst on carbon substrate from e-waste has been investigated. Chemical route was developed by extraction of the metals available in nitric acid followed by treatment with hydrofluoric acid. Silver metal particles deposited with an average size 4-10 nm. A stabilizer concentration of 10- 40 g/l was used. The average size of the prepared silver decreased with increase of the anode current density. Size uniformity of the silver nano-particles was improved distinctly at higher current density no more than 20mA... Grain size increased with EK time whereby aggregation of particles was observed after 6 h of reaction.. The chemical method involves adsorption of silver nitrate on the carbon substrate. Adsorbed silver ions were directly reduced to metal particles using hydrazine hydrate. Another alternative method is by treatment with ammonia followed by heating the carbon loaded-silver hydroxide at 980°C. The product was characterized with the help of XRD, XRF, ICP, SEM and TEM techniques.

Exact Image Super-Resolution for Pure Translational Motion and Shift-Invariant Blur

In this work, a special case of the image superresolution problem where the only type of motion is global translational motion and the blurs are shift-invariant is investigated. The necessary conditions for exact reconstruction of the original image by using finite impulse-response reconstruction filters are developed. Given that the conditions are satisfied, a method for exact super-resolution is presented and some simulation results are shown.

Voltage Stability Investigation of Grid Connected Wind Farm

At present, it is very common to find renewable energy resources, especially wind power, connected to distribution systems. The impact of this wind power on voltage distribution levels has been addressed in the literature. The majority of this works deals with the determination of the maximum active and reactive power that is possible to be connected on a system load bus, until the voltage at that bus reaches the voltage collapse point. It is done by the traditional methods of PV curves reported in many references. Theoretical expression of maximum power limited by voltage stability transfer through a grid is formulated using an exact representation of distribution line with ABCD parameters. The expression is used to plot PV curves at various power factors of a radial system. Limited values of reactive power can be obtained. This paper presents a method to study the relationship between the active power and voltage (PV) at the load bus to identify the voltage stability limit. It is a foundation to build a permitted working operation region in complying with the voltage stability limit at the point of common coupling (PCC) connected wind farm.

Multistage Condition Monitoring System of Aircraft Gas Turbine Engine

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Analytical Investigation of Sediment Formation and Transport in the Vicinity of the Water Intake Structures - A Case Study of the Dez Diversion Weir in Greater Dezful

Sedimentation process resulting from soil erosion in the water basin especially in arid and semi-arid where poor vegetation cover in the slope of the mountains upstream could contribute to sediment formation. The consequence of sedimentation not only makes considerable change in the morphology of the river and the hydraulic characteristics but would also have a major challenge for the operation and maintenance of the canal network which depend on water flow to meet the stakeholder-s requirements. For this reason mathematical modeling can be used to simulate the effective factors on scouring, sediment transport and their settling along the waterways. This is particularly important behind the reservoirs which enable the operators to estimate the useful life of these hydraulic structures. The aim of this paper is to simulate the sedimentation and erosion in the eastern and western water intake structures of the Dez Diversion weir using GSTARS-3 software. This is done to estimate the sedimentation and investigate the ways in which to optimize the process and minimize the operational problems. Results indicated that the at the furthest point upstream of the diversion weir, the coarser sediment grains tended to settle. The reason for this is the construction of the phantom bridge and the outstanding rocks just upstream of the structure. The construction of these along the river course has reduced the momentum energy require to push the sediment loads and make it possible for them to settle wherever the river regime allows it. Results further indicated a trend for the sediment size in such a way that as the focus of study shifts downstream the size of grains get smaller and vice versa. It was also found that the finding of the GSTARS-3 had a close proximity with the sets of the observed data. This suggests that the software is a powerful analytical tool which can be applied in the river engineering project with a minimum of costs and relatively accurate results.

On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Machining Parameters Optimization of Developed Yttria Stabilized Zirconia Toughened Alumina Ceramic Inserts While Machining AISI 4340 Steel

An attempt has been made to investigate the machinability of zirconia toughened alumina (ZTA) inserts while turning AISI 4340 steel. The insert was prepared by powder metallurgy process route and the machining experiments were performed based on Response Surface Methodology (RSM) design called Central Composite Design (CCD). The mathematical model of flank wear, cutting force and surface roughness have been developed using second order regression analysis. The adequacy of model has been carried out based on Analysis of variance (ANOVA) techniques. It can be concluded that cutting speed and feed rate are the two most influential factor for flank wear and cutting force prediction. For surface roughness determination, the cutting speed & depth of cut both have significant contribution. Key parameters effect on each response has also been presented in graphical contours for choosing the operating parameter preciously. 83% desirability level has been achieved using this optimized condition.

E-health in Rural Areas: Case of Developing Countries

The Application of e-health solutions has brought superb advancements in the health care industry. E-health solutions have already been embraced in the industrialized countries. In an effort to catch up with the growth, the developing countries have strived to revolutionize the healthcare industry by use of Information technology in different ways. Based on a technology assessment carried out in Kenya – one of the developing countries – and using multiple case studies in Nyanza Province, this work focuses on an investigation on how five rural hospitals are adapting to the technology shift. The issues examined include the ICT infrastructure and e-health technologies in place, the knowledge of participants in terms of benefits gained through the use of ICT and the challenges posing barriers to the use of ICT technologies in these hospitals. The results reveal that the ICT infrastructure in place is inadequate for e-health implementations as a result to various challenges that exist. Consequently, suggestions on how to tackle the various challenges have been addressed in this paper.

Diagnosing Dangerous Arrhythmia of Patients by Automatic Detecting of QRS Complexes in ECG

In this paper, an automatic detecting algorithm for QRS complex detecting was applied for analyzing ECG recordings and five criteria for dangerous arrhythmia diagnosing are applied for a protocol type of automatic arrhythmia diagnosing system. The automatic detecting algorithm applied in this paper detected the distribution of QRS complexes in ECG recordings and related information, such as heart rate and RR interval. In this investigation, twenty sampled ECG recordings of patients with different pathologic conditions were collected for off-line analysis. A combinative application of four digital filters for bettering ECG signals and promoting detecting rate for QRS complex was proposed as pre-processing. Both of hardware filters and digital filters were applied to eliminate different types of noises mixed with ECG recordings. Then, an automatic detecting algorithm of QRS complex was applied for verifying the distribution of QRS complex. Finally, the quantitative clinic criteria for diagnosing arrhythmia were programmed in a practical application for automatic arrhythmia diagnosing as a post-processor. The results of diagnoses by automatic dangerous arrhythmia diagnosing were compared with the results of off-line diagnoses by experienced clinic physicians. The results of comparison showed the application of automatic dangerous arrhythmia diagnosis performed a matching rate of 95% compared with an experienced physician-s diagnoses.