Corporate Fraud: An Analysis of Malaysian Securities Commission Enforcement Releases

Economic crime (i.e. corporate fraud) has a significant impact on business. This study analyzes the fraud cases reported by the Malaysian Securities Commission. Frauds involving market manipulation and/or illegal share trading are the most common types of fraud reported over the 6 years analyzed. The highest number of frauds reported involved investment and fund holding companies. Alarmingly the results indicate quite a high number of frauds cases are committed by management. The higher number of Chinese perpetrators may be due to fact that they are the dominant group in Malaysian business. The result also shows that more than half of companies involved with fraud are privately held companies in the investment/fund/finance sector. The results of this study highlight general characteristic of perpetrators (person and company) that commit fraud which could help the regulators in their monitoring and enforcement activities. To investors, this would help in analyzing their business investment or portfolio risk.

SMCC: Self-Managing Congestion Control Algorithm

Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.

Into the Bank Lending Channel of SEE: Greek Banks- Buffering Effects

This paper tries to shed light on the existence of a bank lending channel (BLC) in South Eastern European countries (SEE). Based on a VAR framework we test the responsiveness of credit supply to monetary policy shocks. By compiling a new data set and using the reserve requirement ratio, among others, as the policy instrument we measure the effectiveness of the BLC and the buffering effect of the banks in the SEE countries. The results indicate that loan supply is significantly affected by shifts in monetary policy, when demand factors are controlled. Furthermore, by analyzing the effect of the Greek banks in the region we conclude that Greek banks do buffer the negative effects of monetary policy transmission. By having a significant market share of the SEE-s banking markets we argue that Greek banks influence positively the economic growth of SEE countries.

Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise

Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.

The Effects of Misspecification of Stochastic Processes on Investment Appraisal

For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.

Radio Technology Frequency Identification Applied in High-Voltage Power Transmission- Line for Sag Measurement

High-voltage power transmission lines are the back bone of electrical power utilities. The stability and continuous monitoring of this critical infrastructure is pivotal. Nine-Sigma representing Eskom Holding SOC limited, South Africa has a major problem on proactive detection of fallen power lines and real time sagging measurement together with slipping of such conductors. The main objective of this research is to innovate RFID technology to solve this challenge. Various options and technologies such as GPS, PLC, image processing, MR sensors and etc., have been reviewed and draw backs were made. The potential of RFID to give precision measurement will be observed and presented. The future research will look at magnetic and electrical interference as well as corona effect on the technology.

Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation

This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.

Determination of the Proper Quality Costs Parameters via Variable Step Size Steepest Descent Algorithm

This paper presents the determination of the proper quality costs parameters which provide the optimum return. The system dynamics simulation was applied. The simulation model was constructed by the real data from a case of the electronic devices manufacturer in Thailand. The Steepest Descent algorithm was employed to optimise. The experimental results show that the company should spend on prevention and appraisal activities for 850 and 10 Baht/day respectively. It provides minimum cumulative total quality cost, which is 258,000 Baht in twelve months. The effect of the step size in the stage of improving the variables to the optimum was also investigated. It can be stated that the smaller step size provided a better result with more experimental runs. However, the different yield in this case is not significant in practice. Therefore, the greater step size is recommended because the region of optima could be reached more easily and rapidly.

Scope and Application of Collaborative Tools and Digital Manufacturing in Dentistry

It is necessary to incorporate technological advances achieved in the field of engineering into dentistry in order to enhance the process of diagnosis, treatment planning and enable the doctors to render better treatment to their patients. To achieve this ultimate goal long distance collaborations are often necessary. This paper discusses the various collaborative tools and their applications to solve a few burning problems confronted by the dentists. Customization is often the solution to most of the problems. But rapid designing, development and cost effective manufacturing is a difficult task to achieve. This problem can be solved using the technique of digital manufacturing. Cases from 6 major branches of dentistry have been discussed and possible solutions with the help of state of art technology using rapid digital manufacturing have been proposed in the present paper. The paper also entails the usage of existing tools in collaborative and digital manufacturing area.

Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm

This paper presents a systematic procedure for modelling and simulation of a power system installed with a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)-based controller. For the design purpose, the model of example power system which is a single-machine infinite-bus power system installed with the proposed controllers is developed in MATLAB/SIMULINK. In the developed model synchronous generator is represented by model 1.1. which includes both the generator main field winding and the damper winding in q-axis so as to evaluate the impact of PSS and FACTS-based controller on power system stability. The model can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, to avoid adverse interactions, PSS and FACTS-based controller are simultaneously designed employing genetic algorithm (GA). The non-linear simulation results are presented for the example power system under various disturbance conditions to validate the effectiveness of the proposed modelling and simultaneous design approach.

Numerical Study of Oxygen Enrichment on NO Pollution Spread in a Combustion Chamber

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aim to obtain detailed information on combustion characteristics and _ nitrogen oxides in the furnace and the effect of oxygen enrichment in a combustion process. Oxygenenriched combustion is an effective way to reduce emissions. This paper analyzes NO emission, including thermal NO and prompt NO. Flow rate ratio of air to fuel is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.32 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Results show that for AF=1.3, increase the oxygen flow rate of oxygen reduction in NO emissions is Lance. Moreover, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak, but not the NO emission rate. As a result, oxygen enrichment can reduce the NO emission at this kind of furnace in low air to fuel rates.

Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Modeling HIV/AIDS Prevention by Defense

The functional response of an infective is the relationship between an infected individual-s infection rate and the abundance of the number of susceptibles that one can potentially be infected. In this paper, we consider defensive attitudes for HIV prevention (primary prevention) while at the same time emphasizing on offensive attitudes that reduce infection for those infected (secondary prevention). We look at how defenses can protect an uninfected individual in the case where high risk groups such as commercial sex workers and those who deliberately go out to look for partners. We propose an infection cycle that begins with a search, then an encounter, a proposal and contact. The infection cycle illustrates the various steps an infected individual goes through to successfully infect a susceptible. For heterogeneous transmission of HIV, there will be no infection unless there is contact. The ability to avoid an encounter, detection, proposal and contact constitute defense.

Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques

Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Evaluation of Torsional Efforts on Thermal Machines Shaft with Gas Turbine resulting of Automatic Reclosing

This paper analyses the torsional efforts in gas turbine-generator shafts caused by high speed automatic reclosing of transmission lines. This issue is especially important for cases of three phase short circuit and unsuccessful reclosure of lines in the vicinity of the thermal plant. The analysis was carried out for the thermal plant TERMOPERNAMBUCO located on Northeast region of Brazil. It is shown that stress level caused by lines unsuccessful reclosing can be several times higher than terminal three-phase short circuit. Simulations were carried out with detailed shaft torsional model provided by machine manufacturer and with the “Alternative Transient Program – ATP" program [1]. Unsuccessful three phase reclosing for selected lines in the area closed to the plant indicated most critical cases. Also, reclosing first the terminal next to the gas turbine gererator will lead also to the most critical condition. Considering that the values of transient torques are very sensible to the instant of reclosing, simulation of unsuccessful reclosing with statistics ATP switch were carried out for determination of most critical transient torques for each section of the generator turbine shaft.

Finite Element Analysis and Feasibility of Simple Stochastic Modeling in the Analysis of Fissuring in Grains during Soaking

A finite element analysis was conducted to determine the effect of moisture diffusion and hygroscopic swelling in rice. A parallel simple stochastic modeling was performed to predict the number of grains cracked as a result of moisture absorption and hygroscopic swelling. Rice grains were soaked in thermally (25 oC) controlled water and then tested for compressive stress. The destructive compressive stress tests revealed through compressive stress calculation that the peak force required to cause cracking in grains soaked in water reduced with time as soaking duration was extended. Results of the experiment showed that several grains had their value of the predicted compressive stress below the von Mises stress and were interpreted as grains which become cracked and/or broke during soaking. The technique developed in this experiment will facilitate the approximation of the number of grains which will crack during soaking.

Mass Casualty Acute Pepper Spray Inhalation Respiratory Effect Severity

Pepper spray use has gained momentum since 1992 and although the active ingredient is readily available, it is considered a weapon with restricted use in many regions, including The Bahamas. In light of controversy in the literature regarding the severity of presenting respiration complaints among individuals postacute exposure of pepper spray inhalation, this descriptive case series study was conducted to assess the respiratory status of persons evaluated during a mass casualty in The Bahamas. Parameters noted were patients- demographics and respiration severity determined via clinical examination findings, disposition and follow-up review of the 20 persons. Their most common complaint was difficulty breathing post exposure. Two required admission and stayed for

The Study on the Wireless Power Transfer System for Mobile Robots

A wireless power transfer system can attribute to the fields in robot, aviation and space in which lightening the weight of device and improving the movement play an important role. A wireless power transfer system was investigated to overcome the inconvenience of using power cable. Especially a wireless power transfer technology is important element for mobile robots. We proposed the wireless power transfer system of the half-bridge resonant converter with the frequency tracking and optimized power transfer control unit. And the possibility of the application and development system was verified through the experiment with LED loads.