MATLAB-Based Graphical User Interface (GUI) for Data Mining as a Tool for Environment Management

The application of data mining to environmental monitoring has become crucial for a number of tasks related to emergency management. Over recent years, many tools have been developed for decision support system (DSS) for emergency management. In this article a graphical user interface (GUI) for environmental monitoring system is presented. This interface allows accomplishing (i) data collection and observation and (ii) extraction for data mining. This tool may be the basis for future development along the line of the open source software paradigm.

Automated Natural Hazard Zonation System with Internet-SMS Warning: Distributed GIS for Sustainable Societies Creating Schema & Interface for Mapping & Communication

The research describes the implementation of a novel and stand-alone system for dynamic hazard warning. The system uses all existing infrastructure already in place like mobile networks, a laptop/PC and the small installation software. The geospatial dataset are the maps of a region which are again frugal. Hence there is no need to invest and it reaches everyone with a mobile. A novel architecture of hazard assessment and warning introduced where major technologies in ICT interfaced to give a unique WebGIS based dynamic real time geohazard warning communication system. A never before architecture introduced for integrating WebGIS with telecommunication technology. Existing technologies interfaced in a novel architectural design to address a neglected domain in a way never done before – through dynamically updatable WebGIS based warning communication. The work publishes new architecture and novelty in addressing hazard warning techniques in sustainable way and user friendly manner. Coupling of hazard zonation and hazard warning procedures into a single system has been shown. Generalized architecture for deciphering a range of geo-hazards has been developed. Hence the developmental work presented here can be summarized as the development of internet-SMS based automated geo-hazard warning communication system; integrating a warning communication system with a hazard evaluation system; interfacing different open-source technologies towards design and development of a warning system; modularization of different technologies towards development of a warning communication system; automated data creation, transformation and dissemination over different interfaces. The architecture of the developed warning system has been functionally automated as well as generalized enough that can be used for any hazard and setup requirement has been kept to a minimum.

Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period between 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Cladding of Al and Cu by Differential Speed Rolling

Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area. 

Dictating Impact of Systemic (Trans)formations on Management Re-engineering in R&D Firms

This paper examines challenges to the implementation and internalization of benchmarked management practices by research organizations in developing economies as transformative tools towards commercialization. The purpose is to understand the contributing influence of internal organizational factors from both situational and historical perspectives towards the practice implementation constraints, and also to provide theoretical understanding on how systemic formations and transformations in the organizations’ activities influenced the level to which their desired needs are attained. The results showed that the variability in the outcomes of the organizations’ transformation processes was indicative of their (in)ability to deal with the impacts of cumulated tensions in the systemic interfaces of their organizational activity systems. It is concluded that the functionalities of the systemic interfaces influence the functionality of the organizational activity system.

Simulation of Inverter Fed Induction Motor Drive with LabVIEW

This paper describes a software approach for modeling inverter fed induction motor drive using Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The reason behind the selection of LabVIEW software is because of its strong graphical interface, flexibility of its programming language combined with built-in tools designed specifically for test, measurement and control. LabVIEW is generally used in most of the applications for data acquisition, test and control. In this paper, inverter and induction motor are modeled using LabVIEW toolkits. Simulation results are presented and are validated.

Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot

Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.

Active Segment Selection Method in EEG Classification Using Fractal Features

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Usability Guidelines for Arab E-government Websites

The website developer and designer should follow usability guidelines to provide a user-friendly interface. Many guidelines and heuristics have been developed by previous studies to help both the developer and designer in this task, but E-government websites are special cases that require specialized guidelines. This paper introduces a set of 18 guidelines for evaluating the usability of e-government websites in general and Arabic e-government websites specifically, along with a check list of how to apply them. The validity and effectiveness of these guidelines were evaluated against a variety of user characteristics. The results indicated that the proposed set of guidelines can be used to identify qualitative similarities and differences with user testing and that the new set is best suited for evaluating general and e-governmental usability.

Study of a Fabry-Perot Resonator

A laser is essentially an optical oscillator consisting of a resonant cavity, an amplifying medium and a pumping source. In semiconductor diode lasers, the cavity is created by the boundary between the cleaved face of the semiconductor crystal and air, and has reflective properties as a result of the differing refractive indices of the two media. For a GaAs-air interface a reflectance of 0.3 is typical and therefore the length of the semiconductor junction forms the resonant cavity. To prevent light being emitted in unwanted directions from the junction, sides perpendicular to the required direction are roughened. The objective of this work is to simulate the optical resonator Fabry-Perot and explore its main characteristics, such as FSR, finesse, linewidth, transmission and so on, that describe the performance of resonator.

Turbine Trip without Bypass Analysis of Kuosheng Nuclear Power Plant Using TRACE Coupling with FRAPTRAN

This analysis of Kuosheng nuclear power plant (NPP) was performed mainly by TRACE, assisted with FRAPTRAN and FRAPCON. SNAP v2.2.1 and TRACE v5.0p3 are used to develop the Kuosheng NPP SPU TRACE model which can simulate the turbine trip without bypass transient. From the analysis of TRACE, the important parameters such as dome pressure, coolant temperature and pressure can be determined. Through these parameters, comparing with the criteria which were formulated by United States Nuclear Regulatory Commission (U.S. NRC), we can determine whether the Kuoshengnuclear power plant failed or not in the accident analysis. However, from the data of TRACE, the fuel rods status cannot be determined. With the information from TRACE and burn-up analysis obtained from FRAPCON, FRAPTRAN analyzes more details about the fuel rods in this transient. Besides, through the SNAP interface, the data results can be presented as an animation. From the animation, the TRACE and FRAPTRAN data can be merged together that may be realized by the readers more easily. In this research, TRACE showed that the maximum dome pressure of the reactor reaches to 8.32 MPa, which is lower than the acceptance limit 9.58 MPa. Furthermore, FRAPTRAN revels that the maximum strain is about 0.00165, which is below the criteria 0.01. In addition, cladding enthalpy is 52.44 cal/g which is lower than 170 cal/g specified by the USNRC NUREG-0800 Standard Review Plan.

Low Value Capacitance Measurement System with Adjustable Lead Capacitance Compensation

The present paper describes the development of a low cost, highly accurate low capacitance measurement system that can be used over a range of 0 – 400 pF with a resolution of 1 pF. The range of capacitance may be easily altered by a simple resistance or capacitance variation of the measurement circuit. This capacitance measurement system uses quad two-input NAND Schmitt trigger circuit CD4093B with hysteresis for the measurement and this system is integrated with PIC 18F2550 microcontroller for data acquisition purpose. The microcontroller interacts with software developed in the PC end through USB architecture and an attractive graphical user interface (GUI) based system is developed in the PC end to provide the user with real time, online display of capacitance under measurement. The system uses a differential mode of capacitance measurement, with reference to a trimmer capacitance, that effectively compensates lead capacitances, a notorious error encountered in usual low capacitance measurements. The hysteresis provided in the Schmitt-trigger circuits enable reliable operation of the system by greatly minimizing the possibility of false triggering because of stray interferences, usually regarded as another source of significant error. The real life testing of the proposed system showed that our measurements could produce highly accurate capacitance measurements, when compared to cutting edge, high end digital capacitance meters.

Enterprise Infrastructure Related to the Product Value Transferred from Intellectual Capital

The paper proposed a new theory of intellectual capital (so called IC) and a value approach in associated with production and market. After an in-depth review and research analysis of leading firms in this field, a holistic intellectual capital model is discussed, which involves transport, delivery supporting, and interface and systems of on intellectual capital. Through a quantity study, it is found that there is a significant relationship between the product value and infrastructure in a company. The product values are transferred from intellectual capital elements which includes three elements of content and the enterprise includes three elements of infrastructure in its market and product values of enterprise. 

Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid

Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.

Increased Signal to Noise Ratio in P300 Potentials by the Method of Coherent Self-Averaging in BCI Systems

The coherent Self-Averaging (CSA), is a new method proposed in this work; applied to simulated signals evoked potentials related to events (ERP) to find the wave P300, useful systems in the brain computer interface (BCI). The CSA method cleans signal in the time domain of white noise through of successive averaging of a single signal. The method is compared with the traditional method, coherent averaging or synchronized (CA), showing optimal results in the improvement of the signal to noise ratio (SNR). The method of CSA is easy to implement, robust and applicable to any physiological time series contaminated with white noise

Synthesis and Foam Power of New Biodegradable Surfactant

This work deals with the synthesis and the determination of some surface properties of a new anionic surfactant belonging to sulfonamide derivatives. The interest in this new surfactant is that its behavior in aqueous solution is interesting both from a fundamental and a practice point of view. Indeed, it is well known that this kind of surfactant leads to the formation of bilayer structures, and the microstructures obtained have applications in various fields, ranging from cosmetics to detergents, to biological systems such as cell membranes and bioreactors. The surfactant synthesized from pure n-alkane by photosulfochlorination and derivatized using N-ethanol amine is a mixture of position isomers. These compounds have been analyzed by Gas Chromatography coupled to Mass Spectrometry by Electron Impact mode (GC -MS/IE), and IR. The surface tension measurements were carried out, leading to the determination of the critical micelle concentration (CMC), surface excess and the area occupied per molecule at the interface. The foaming power has also been determined by Bartsch method, and the results have been compared to those of commercial surfactants. The stability of the foam formed has also been evaluated. These compounds show good foaming power characterized in most cases by dry foam.

Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Control Signal from EOG Analysis and Its Application

A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.

Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.