A Case Study on Barriers in Total Productive Maintenance Implementation in the Abu Dhabi Power Industry

Maintenance has evolved into an imperative function, and contributes significantly to efficient and effective equipment performance. Total Productive Maintenance (TPM) is an ideal approach to support the development and implementation of operation performance improvement. It systematically aims to understand the function of equipment, the service quality relationship with equipment and the probable critical equipment failure conditions. Implementation of TPM programmes need strategic planning and there has been little research applied in this area within Middle-East power plants. In the power sector of Abu Dhabi, technologically and strategically, the power industry is extremely important, and it thus needs effective and efficient equipment management support. The aim of this paper is to investigate barriers to successful TPM implementation in the Abu Dhabi power industry. The study has been conducted in the context of a leading power company in the UAE. Semi-structured interviews were conducted with 16 employees, including maintenance and operation staff, and senior managers. The findings of this research identified seven key barriers, thus: managerial; organisational; cultural; financial; educational; communications; and auditing. With respect to the understanding of these barriers and obstacles in TPM implementation, the findings can contribute towards improved equipment operations and maintenance in power organisations.

Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Practical Techniques of Improving State Estimator Solution

State Estimator became an intrinsic part of Energy Management Systems (EMS). The SCADA measurements received from the field are processed by the State Estimator in order to accurately determine the actual operating state of the power systems and provide that information to other real-time network applications. All EMS vendors offer a State Estimator functionality in their baseline products. However, setting up and ensuring that State Estimator consistently produces a reliable solution often consumes a substantial engineering effort. This paper provides generic recommendations and describes a simple practical approach to efficient tuning of State Estimator, based on the working experience with major EMS software platforms and consulting projects in many electrical utilities of the USA.

Digital Library Evaluation by SWARA-WASPAS Method

Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.

Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

A Comparison Study of the Animation Industries between China and Japan

Taking Japanese and Chinese animation industry as research objects with a detailed analysis and comparison of the industrial models and status quo in two countries, this study fully reveals the development mechanism and internal and external situations of the industry. It is believed that the Japanese animation industry's continuous pursuit of low-cost production models, virtuous recycling mechanisms, and active expansion of overseas markets are valuable experiences; whereas China needs to strengthen national and local support for animation and emphasis on the protection of the copyright. The targeted and forward-looking suggestions and conclusions proposed in this study provides not only an insight into the animation industry but also inspirations for development in the animation industry around the world through an analysis of experiences and shortcomings.

Public Participation Regarding Heritage Preservation in Former Communist Countries: The Case of Tobacco City in Plovdiv, Bulgaria

In times of rapid globalization, the significance of cultural and architectural heritage is rising, as it is a key element to define the identity of a place, a city, even a country. Its preservation, conservation, and revitalization are everyone’s responsibility, and the public is growing more aware of that fact. The citizens are looking for a way to actively participate in the decision-making in projects regarding heritage sites. Public involvement in the planning process is not a new phenomenon, especially in Western countries. However, countries, such as the former communist states of Eastern Europe, have been less studied. Based on established theories, this paper analyses the level of citizens’ inclusion in projects regarding heritage preservation, using the example of the Tobacco City in Plovdiv, Bulgaria. As this case is exemplary for Bulgaria, it illustrates the current condition of public participation country-wise. At the same time, considering the former communist states have had a similar socio-economic and political development in the past several decades, it is possible to apply the conclusions to most of these countries with only slight variations.

Designing of a Non-Zero Dispersion Shifted Fiber with Ultra-High Birefringence and High Non-Linearity

Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.

Building Resilient Communities: The Traumatic Effect of Wildfire on Mati, Greece

The present research addresses the role of place attachment and emotions in community resiliency and recovery within the context of a disaster. Natural disasters represent a disruption in the normal functioning of a community, leading to a general feeling of disorientation. This study draws on the trauma caused by a natural hazard such as a forest fire. The changes of the sense of togetherness are being assessed. Finally this research determines how the place attachment of the inhabitants was affected during the reorientation process of the community. The case study area is Mati, a small coastal town in eastern Attica, Greece. The fire broke out on July 23rd, 2018. A quantitative research was conducted through questionnaires via phone interviews, one year after the disaster, to address community resiliency in the long-run. The sample was composed of 159 participants from the rural community of Mati plus 120 coming from Skyros Island that was used as a control group. Inhabitants were prompted to answer items gauging their emotions related to the event, group identification and emotional significance of their community, and place attachment before and a year after the fire took place. Importantly, the community recovery and reorientation were examined within the context of a relative absence of government backing and official support. Emotions related to the event were aggregated into 4 clusters related to: activation/vigilance, distress/disorientation, indignation, and helplessness. The findings revealed a decrease in the level of place attachment in the impacted area of Mati as compared to the control group of Skyros Island. Importantly, initial distress caused by the fire prompted the residents to identify more with their community and to report more positive feelings toward their community. Moreover, a mediation analysis indicated that the positive effect of community cohesion on place attachment one year after the disaster was mediated by the positive feelings toward the community. Finally, place attachment contributes to enhanced optimism and a more positive perspective concerning Mati’s future prospects. Despite an insufficient state support to this affected area, the findings suggest an important role of emotions and place attachment during the process of recovery. Implications concerning the role of emotions and social dynamics in meshing place attachment during the disaster recovery process as well as community resiliency are discussed.

Mistranslation in Cross Cultural Communication: A Discourse Analysis on Former President Bush’s Speech in 2001

The differences in languages play a big role in cross-cultural communication. If meanings are not translated accurately, the risk can be crucial not only on an interpersonal level, but also on the international and political levels. The use of metaphorical language by politicians can cause great confusion, often leading to statements being misconstrued. In these situations, it is the translators who struggle to put forward the intended meaning with clarity and this makes translation an important field to study and analyze when it comes to cross-cultural communication. Owing to the growing importance of language and the power of translation in politics, this research analyzes part of President Bush’s speech in 2001 in which he used the word “Crusade” which caused his statement to be misconstrued. The research uses a discourse analysis of cross-cultural communication literature which provides answers supported by historical, linguistic, and communicative perspectives. The first finding indicates that the word ‘crusade’ carries different meaning and significance in the narratives of the Western world when compared to the Middle East. The second one is that, linguistically, maintaining cultural meanings through translation is quite difficult and challenging. Third, when it comes to the cross-cultural communication perspective, the common and frequent usage of literal translation is a sign of poor strategies being followed in translation training. Based on the example of Bush’s speech, this paper hopes to highlight the weak practices in translation in cross-cultural communication which are still commonly used across the world. Translation studies have to take issues such as this seriously and attempt to find a solution. In every language, there are words and phrases that have cultural, historical and social meanings that are woven into the language. Literal translation is not the solution for this problem because that strategy is unable to convey these meanings in the target language.

Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers

Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.

Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test

Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.

The Cardiac Diagnostic Prediction Applied to a Designed Holter

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Modeling and Analysis of a Cycling Prosthetic

There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.

In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Rank-Based Chain-Mode Ensemble for Binary Classification

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Design for Classroom Units: A Collaborative Multicultural Studio Development with Chinese Students

In this paper, we present the main results achieved during a five-week international workshop on Interactive Furniture for the Classroom, with 22 Chinese design students, in Jiangmen city (Guangdong province, China), and five teachers from Portugal, France, Iran, Macao SAR, and China. The main goal was to engage design students from China with new skills and practice methodologies towards interactive design research for furniture and product design for the classroom. The final results demonstrate students' concerns on improving Chinese furniture design for the classrooms, including solutions related to collaborative learning and human-interaction design for interactive furniture products. The findings of the research led students to the fabrication of five original prototypes: two for kindergartens ('Candy' and 'Tilt-tilt'), two for primary schools ('Closer' and 'Eks(x)'), and one for art/creative schools ('Wave'). From the findings, it was also clear that collaboration, personalization, and project-based teaching are still neglected when designing furniture products for the classroom in China. Students focused on these issues and came up with creative solutions that could transform this educational field in China.

A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Impact of VARK Learning Model at Tertiary Level Education

Individuals are generally associated with different learning styles, which have been explored extensively in recent past. The learning styles refer to the potential of an individual by which s/he can easily comprehend and retain information. Among various learning style models, VARK is the most accepted model which categorizes the learners with respect to their sensory characteristics. Based on the number of preferred learning modes, the learners can be categorized as uni-modal, bi-modal, tri-modal, or quad/multi-modal. Although there is a prevalent belief in the learning styles, however, the model is not being frequently and effectively utilized in the higher education. This research describes the identification model to validate teacher’s didactic practice and student’s performance linkage with the learning styles. The identification model is recommended to check the effective application and evaluation of the various learning styles. The proposed model is a guideline to effectively implement learning styles inventory in order to ensure that it will validate performance linkage with learning styles. If performance is linked with learning styles, this may help eradicate the distrust on learning style theory. For this purpose, a comprehensive study was conducted to compare and understand how VARK inventory model is being used to identify learning preferences and their correlation with learner’s performance. A comparative analysis of the findings of these studies is presented to understand the learning styles of tertiary students in various disciplines. It is concluded with confidence that the learning styles of students cannot be associated with any specific discipline. Furthermore, there is not enough empirical proof to link performance with learning styles.

Analysis of Fixed Beamforming Algorithms for Smart Antenna Systems

The smart antenna is the prominent technology that has become known in recent years to meet the growing demands of wireless communications. In an overcrowded atmosphere, its application is growing gradually. A methodical evaluation of the performance of Fixed Beamforming algorithms for smart antennas such as Multiple Sidelobe Canceller (MSC), Maximum Signal-to-interference ratio (MSIR) and minimum variance (MVDR) has been comprehensively presented in this paper. Simulation results show that beamforming is helpful in providing optimized response towards desired directions. MVDR beamformer provides the most optimal solution.