Analysis of a Novel Strained Silicon RF LDMOS

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Influence of Metakaolin on the Performance of Mortars and Concretes

The use of additions in cement in manufacturing, mortar and concrete offers economic and ecological advantages. Cements with additions such as limestone, slag and natural pouzzolana are produced in cement factories in Algeria. Several studies analyzed the effect of these additions on the physical and mechanical properties as well as the durability of concrete. However, few studies were conducted on the effect of local metakaolin on mechanical properties and durability of concrete. The main purpose of this paper is to analyze the performance of mortar and concrete with local metakaolin. The preparation of the metakaolin was carried out by calcination of kaolin at a temperature of 850 °C for a period of 3 hours. The experimental results have shown that the rates of substitutions of 10 and 15% metakaolin increases the compressive strength and flexural strength at both early age and long term. The durability and the permeability were also improved by reducing the coefficient of sorptivity.

Speech Activated Automation

This article presents a simple way to perform programmed voice commands for the interface with commercial Digital and Analogue Input/Output PCI cards, used in Robotics and Automation applications. Robots and Automation equipment can "listen" to voice commands and perform several different tasks, approaching to the human behavior, and improving the human- machine interfaces for the Automation Industry. Since most PCI Digital and Analogue Input/Output cards are sold with several DLLs included (for use with different programming languages), it is possible to add speech recognition capability, using a standard speech recognition engine, compatible with the programming languages used. It was created in this work a Visual Basic 6 (the world's most popular language) application, that listens to several voice commands, and is capable to communicate directly with several standard 128 Digital I/O PCI Cards, used to control complete Automation Systems, with up to (number of boards used) x 128 Sensors and/or Actuators.

Using Fuzzy Numbers in Heavy Aggregation Operators

We consider different types of aggregation operators such as the heavy ordered weighted averaging (HOWA) operator and the fuzzy ordered weighted averaging (FOWA) operator. We introduce a new extension of the OWA operator called the fuzzy heavy ordered weighted averaging (FHOWA) operator. The main characteristic of this aggregation operator is that it deals with uncertain information represented in the form of fuzzy numbers (FN) in the HOWA operator. We develop the basic concepts of this operator and study some of its properties. We also develop a wide range of families of FHOWA operators such as the fuzzy push up allocation, the fuzzy push down allocation, the fuzzy median allocation and the fuzzy uniform allocation.

Performance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm

Direction of Arrival estimation refers to defining a mathematical function called a pseudospectrum that gives an indication of the angle a signal is impinging on the antenna array. This estimation is an efficient method of improving the quality of service in a communication system by focusing the reception and transmission only in the estimated direction thereby increasing fidelity with a provision to suppress interferers. This improvement is largely dependent on the performance of the algorithm employed in the estimation. Many DOA algorithms exists amongst which are MUSIC, Root-MUSIC and ESPRIT. In this paper, performance of these three algorithms is analyzed in terms of complexity, accuracy as assessed and characterized by the CRLB and memory requirements in various environments and array sizes. It is found that the three algorithms are high resolution and dependent on the operating environment and the array size. 

Mechanical-Physical Characteristics Affecting the Durability of Fibre Reinforced Concrete with Recycled Aggregate

The article presents findings from the study and analysis of the results of an experimental programme focused on the production of concrete and fibre reinforced concrete in which natural aggregate has been substituted with brick or concrete recyclate. The research results are analyzed to monitor the effect of mechanicalphysical characteristics on the durability properties of tested cementitious composites. The key parts of the fibre reinforced concrete mix are the basic components: aggregates – recyclate, cement, fly ash, water and fibres. Their specific ratios and the properties of individual components principally affect the resulting behaviour of fresh fibre reinforced concrete and the characteristics of the final product. The article builds on the sources dealing with the use of recycled aggregates from construction and demolition waste in the production of fibre reinforced concrete. The implemented procedure of testing the composite contributes to the building sustainability in environmental engineering.

Authentication Protocol for Wireless Sensor Networks

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

S-Fuzzy Left h-Ideal of Hemirings

The notion of S-fuzzy left h-ideals in a hemiring is introduced and it's basic properties are investigated.We also study the homomorphic image and preimage of S-fuzzy left h-ideal of hemirings.Using a collection of left h-ideals of a hemiring, S-fuzzy left h-ideal of hemirings are established.The notion of a finite-valued S-fuzzy left h-ideal is introduced,and its characterization is given.S-fuzzy relations on hemirings are discussed.The notion of direct product and S-product are introduced and some properties of the direct product and S-product of S-fuzzy left h-ideal of hemiring are also discussed.

Stochastic Simulation of Reaction-Diffusion Systems

Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.

On Solution of Interval Valued Intuitionistic Fuzzy Assignment Problem Using Similarity Measure and Score Function

The primary objective of the paper is to propose a new method for solving assignment problem under uncertain situation. In the classical assignment problem (AP), zpqdenotes the cost for assigning the qth job to the pth person which is deterministic in nature. Here in some uncertain situation, we have assigned a cost in the form of composite relative degree Fpq instead of  and this replaced cost is in the maximization form. In this paper, it has been solved and validated by the two proposed algorithms, a new mathematical formulation of IVIF assignment problem has been presented where the cost has been considered to be an IVIFN and the membership of elements in the set can be explained by positive and negative evidences. To determine the composite relative degree of similarity of IVIFS the concept of similarity measure and the score function is used for validating the solution which is obtained by Composite relative similarity degree method. Further, hypothetical numeric illusion is conducted to clarify the method’s effectiveness and feasibility developed in the study. Finally, conclusion and suggestion for future work are also proposed.

Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS

In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks.

Pollution and Water Quality of the Beshar River

The Beshar River is one aquatic ecosystem,which is affected by pollutants. This study was conducted to evaluate the effects of human activities on the water quality of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial, agricultural and other activities in this region such as factories, hospitals, agricultural farms, urban surface runoff and effluent of wastewater treatment plants. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analysed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2009. The study shows that the BOD5 value of station 1 is at a minimum (1.5 ppm) and increases downstream from stations 2 to 4 to a maximum (7.2 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (9.55 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.4 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations. The physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.

The Effect of Combining Real Experimentation With Virtual Experimentation on Students-Success

The purpose of this study was to investigate the effect of combining Real Experimentation (RE) With Virtual Experimentation (VE) on students- conceptual understanding of photo electric effect. To achieve this, a pre–post comparison study design was used that involved 46 undergraduate students. Two groups were set up for this study. Participants in the control group used RE to learn photo electric effect, whereas, participants in the experimental group used RE in the first part of the curriculum and VE in another part. Achievement test was given to the groups before and after the application as pre-test and post test. The independent samples t- test, one way Anova and Tukey HSD test were used for testing the data obtained from the study. According to the results of analyzes, the experimental group was found more successful than the control group.

Reliability Analysis of Press Unit using Vague Set

In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.

Fuzzy Predictive Pursuit Guidance in the Homing Missiles

A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.

Rebuilding the Dental Hygiene Habits of the Hospitalized Patients with Schizophrenia

Oral health is particular important to the hospitalized patients with chronic schizophrenia for an extreme high potential of the respiratory infections. Due to the degeneration of physical capability, patients of this kind typically fall dependent in the activity of daily living (ADL). A very high percentage of patients had dental problems of which mostly could be easily avoid by easy regular tooth brushing. Purpose of the project is to develop a mechanism in helping the schizophrenia patients in rebuilding a tooth-cleaning habit. The project observed and evaluated the tooth-cleaning behavior of 100 male patients in a psychiatric hospital, and found the majority of them ignored such an activity in a three-month period of time. In the meantime, the primary care-givers were not aware or not convinced the importance of such a need of dental hygiene, and thus few if any tooth cleaning training or knowledge on dental hygiene were given to the patients. The project then developed a program based on the numerous observations and discussions. The improvement program included patients- group education, care-givers- training, and a tool-kit for tooth-brush holding was erected. The project launched with some incentive package. The outcomes were encouraging with 87% of the patients had rebuilt their tooth-brushing habits against previous 22%, and the tooth cleaning kits were 100% kept against 22% in the past. This project had significantly improved the oral health of the patients. The project, included the procedure and the tool-kit holder specific for this purpose, was a good examples for psychiatric hospitals.

A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets

A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.

Some Characteristics of Biodegradable Film Substituted by Yam (Dioscorea alata) Starch from Thailand

Yam starch obtained from the water yam (munlued) by the wet milling process was studied for some physicochemical properties. Yam starch film was prepared by casting using glycerol as a plasticizer. The effect of different glycerol (1.30, 1.65 and 2.00g/100g of filmogenic solution) and starch concentrations (3.30, 3.65 and 4.00g /100g of filmogenic solution) were evaluated on some characteristics of the film. The temperature for obtaining the gelatinized starch solution was 70-80°C and then dried at 45°C for 4 hours. The resulting starch from munlued granular morphology was triangular and the average size of the granule was 26.68 μm. The amylose content by colorimetric method was 26 % and the gelatinize temperature was 70-80°C. The appearance of the film was smooth, transparent, and glossy with average moisture content of 25.96% and thickness of 0.01mm. Puncture deformation and flexibility increased with glycerol content. The starch and glycerol concentration were a significant factor of the yam starch film characteristics. Yam starch film can be described as a biofilm providing many applications and developments with the advantage of biodegradability.

The Analysis of Printing Quality of Offset - Printing Ink with Coconut Oil Base

The objectives of this research are to produce prototype coconut oil based solvent offset printing inks and to analyze a basic quality of printing work derived from coconut oil based solvent offset printing inks, by mean of bringing coconut oil for producing varnish and bringing such varnish to produce black offset printing inks. Then, analysis of qualities i.e. CIELAB value, density value, and dot gain value of printing work from coconut oil based solvent offset printing inks which printed on gloss-coated woodfree paper weighs 130 grams were done. The research result of coconut oil based solvent offset printing inks indicated that the suitable varnish formulation is using 51% of coconut oil, 36% of phenolic resin, and 14% of solvent oil 14%, while the result of producing black offset ink displayed that the suitable formula of printing ink is using varnish mixed with 20% of coconut oil, and the analyzing printing work of coconut oil based solvent offset printing inks which printed on paper, the results were as follows: CIELAB value of black offset printing ink is at L* = 31.90, a* = 0.27, and b* = 1.86, density value is at 1.27 and dot gain value was high at mid tone area of image area.