Application of Kansei Engineering and Association Rules Mining in Product Design

The Kansei engineering is a technology which converts human feelings into quantitative terms and helps designers develop new products that meet customers- expectation. Standard Kansei engineering procedure involves finding relationships between human feelings and design elements of which many researchers have found forward and backward relationship through various soft computing techniques. In this paper, we proposed the framework of Kansei engineering linking relationship not only between human feelings and design elements, but also the whole part of product, by constructing association rules. In this experiment, we obtain input from emotion score that subjects rate when they see the whole part of the product by applying semantic differentials. Then, association rules are constructed to discover the combination of design element which affects the human feeling. The results of our experiment suggest the pattern of relationship of design elements according to human feelings which can be derived from the whole part of product.

Addressing Data Security in the Cloud

The development of information and communication technology, the increased use of the internet, as well as the effects of the recession within the last years, have lead to the increased use of cloud computing based solutions, also called on-demand solutions. These solutions offer a large number of benefits to organizations as well as challenges and risks, mainly determined by data visualization in different geographic locations on the internet. As far as the specific risks of cloud environment are concerned, data security is still considered a peak barrier in adopting cloud computing. The present study offers an approach upon ensuring the security of cloud data, oriented towards the whole data life cycle. The final part of the study focuses on the assessment of data security in the cloud, this representing the bases in determining the potential losses and the premise for subsequent improvements and continuous learning.

A Context-Aware based Authorization System for Pervasive Grid Computing

This paper describes the authorization system architecture for Pervasive Grid environment. It discusses the characteristics of classical authorization system and requirements of the authorization system in pervasive grid environment as well. Based on our analysis of current systems and taking into account the main requirements of such pervasive environment, we propose new authorization system architecture as an extension of the existing grid authorization mechanisms. This architecture not only supports user attributes but also context attributes which act as a key concept for context-awareness thought. The architecture allows authorization of users dynamically when there are changes in the pervasive grid environment. For this, we opt for hybrid authorization method that integrates push and pull mechanisms to combine the existing grid authorization attributes with dynamic context assertions. We will investigate the proposed architecture using a real testing environment that includes heterogeneous pervasive grid infrastructures mapped over multiple virtual organizations. Various scenarios are described in the last section of the article to strengthen the proposed mechanism with different facilities for the authorization procedure.

A Review on Soft Computing Technique in Intrusion Detection System

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Persistence of Termination for Term Rewriting Systems with Ordered Sorts

A property is persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. Zantema showed that termination is persistent for term rewriting systems without collapsing or duplicating rules. In this paper, we show that the Zantema's result can be extended to term rewriting systems on ordered sorts, i.e., termination is persistent for term rewriting systems on ordered sorts without collapsing, decreasing or duplicating rules. Furthermore we give the example as application of this result. Also we obtain that completeness is persistent for this class of term rewriting systems.

Solving Fully Fuzzy Linear Systems by use of a Certain Decomposition of the Coefficient Matrix

In this paper, we give a certain decomposition of the coefficient matrix of the fully fuzzy linear system (FFLS) to obtain a simple algorithm for solving these systems. The new algorithm can solve FFLS in a smaller computing process. We will illustrate our method by solving some examples.

Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Learning a Song: an ACT-R Model

The way music is interpreted by the human brain is a very interesting topic, but also an intricate one. Although this domain has been studied for over a century, many gray areas remain in the understanding of music. Recent advances have enabled us to perform accurate measurements of the time taken by the human brain to interpret and assimilate a sound. Cognitive computing provides tools and development environments that facilitate human cognition simulation. ACT-R is a cognitive architecture which offers an environment for implementing human cognitive tasks. This project combines our understanding of the music interpretation by a human listener and the ACT-R cognitive architecture to build SINGER, a computerized simulation for listening and recalling songs. The results are similar to human experimental data. Simulation results also show how it is easier to remember short melodies than long melodies which require more trials to be recalled correctly.

Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid

A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

ClassMATE: Enabling Ambient Intelligence in the Classroom

Ambient Intelligence (AmI) environments bring significant potential to exploit sophisticated computer technology in everyday life. In particular, the educational domain could be significantly enhanced through AmI, as personalized and adapted learning could be transformed from paper concepts and prototypes to real-life scenarios. In this paper, an integrated framework is presented, named ClassMATE, supporting ubiquitous computing and communication in a school classroom. The main objective of ClassMATE is to enable pervasive interaction and context aware education in the technologically augmented classroom of the future.

Bridged Quantum Cellular Automata based on Si/SiO2 Superlattices

The new architecture for quantum cellular automata is offered. A QCA cell includes two layers nc-Si, divided by a dielectric. Among themselves cells are connected by the bridge from a conductive material. The comparison is made between this and QCA, offered earlier by C. Lent's group.

On Mobile Checkpointing using Index and Time Together

Checkpointing is one of the commonly used techniques to provide fault-tolerance in distributed systems so that the system can operate even if one or more components have failed. However, mobile computing systems are constrained by low bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life. Hence, checkpointing protocols having lesser number of synchronization messages and fewer checkpoints are preferred in mobile environment. There are two different approaches, although not orthogonal, to checkpoint mobile computing systems namely, time-based and index-based. Our protocol is a fusion of these two approaches, though not first of its kind. In the present exposition, an index-based checkpointing protocol has been developed, which uses time to indirectly coordinate the creation of consistent global checkpoints for mobile computing systems. The proposed algorithm is non-blocking, adaptive, and does not use any control message. Compared to other contemporary checkpointing algorithms, it is computationally more efficient because it takes lesser number of checkpoints and does not need to compute dependency relationships. A brief account of important and relevant works in both the fields, time-based and index-based, has also been included in the presentation.

Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

The Future of Electronic Money

The history of money is described in relationship to the history of computing. With the transformation and acceptance of money as information, major challenges to the security of money have involved engineering, computer science, and management. Research opportunities and challenges are described as money continues its transformation into information.

Analyzing Artificial Emotion in Game Characters Using Soft Computing

This paper describes a simulation model for analyzing artificial emotion injected to design the game characters. Most of the game storyboard is interactive in nature and the virtual characters of the game are equipped with an individual personality and dynamic emotion value which is similar to real life emotion and behavior. The uncertainty in real expression, mood and behavior is also exhibited in game paradigm and this is focused in the present paper through a fuzzy logic based agent and storyboard. Subsequently, a pheromone distribution or labeling is presented mimicking the behavior of social insects.

Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

Automatic Light Control in Domotics using Artificial Neural Networks

Home Automation is a field that, among other subjects, is concerned with the comfort, security and energy requirements of private homes. The configuration of automatic functions in this type of houses is not always simple to its inhabitants requiring the initial setup and regular adjustments. In this work, the ubiquitous computing system vision is used, where the users- action patterns are captured, recorded and used to create the contextawareness that allows the self-configuration of the home automation system. The system will try to free the users from setup adjustments as the home tries to adapt to its inhabitants- real habits. In this paper it is described a completely automated process to determine the light state and act on them, taking in account the users- daily habits. Artificial Neural Network (ANN) is used as a pattern recognition method, classifying for each moment the light state. The work presented uses data from a real house where a family is actually living.

Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations

An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .

Service-Oriented Architecture for Object- Centric Information Fusion

In many applications there is a broad variety of information relevant to a focal “object" of interest, and the fusion of such heterogeneous data types is desirable for classification and categorization. While these various data types can sometimes be treated as orthogonal (such as the hull number, superstructure color, and speed of an oil tanker), there are instances where the inference and the correlation between quantities can provide improved fusion capabilities (such as the height, weight, and gender of a person). A service-oriented architecture has been designed and prototyped to support the fusion of information for such “object-centric" situations. It is modular, scalable, and flexible, and designed to support new data sources, fusion algorithms, and computational resources without affecting existing services. The architecture is designed to simplify the incorporation of legacy systems, support exact and probabilistic entity disambiguation, recognize and utilize multiple types of uncertainties, and minimize network bandwidth requirements.