Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios

With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.

Software Development Processes Maturity versus Software Processes and Products Measurement

Unsatisfactory effectiveness of software systems development and enhancement projects is one of the main reasons why in software engineering there are attempts being made to use experiences coming from other engineering disciplines. In spite of specificity of software product and process a belief had come out that the execution of software could be more effective if these objects were subject to measurement – as it is true in other engineering disciplines for which measurement is an immanent feature. Thus objective and reliable approaches to the measurement of software processes and products have been sought in software engineering for several dozens of years already. This may be proved, among others, by the current version of CMMI for Development model. This paper is aimed at analyzing the approach to the software processes and products measurement proposed in the latest version of this very model, indicating growing acceptance for this issue in software engineering.

Using the Monte Carlo Simulation to Predict the Assembly Yield

Electronics Products that achieve high levels of integrated communications, computing and entertainment, multimedia features in small, stylish and robust new form factors are winning in the market place. Due to the high costs that an industry may undergo and how a high yield is directly proportional to high profits, IC (Integrated Circuit) manufacturers struggle to maximize yield, but today-s customers demand miniaturization, low costs, high performance and excellent reliability making the yield maximization a never ending research of an enhanced assembly process. With factors such as minimum tolerances, tighter parameter variations a systematic approach is needed in order to predict the assembly process. In order to evaluate the quality of upcoming circuits, yield models are used which not only predict manufacturing costs but also provide vital information in order to ease the process of correction when the yields fall below expectations. For an IC manufacturer to obtain higher assembly yields all factors such as boards, placement, components, the material from which the components are made of and processes must be taken into consideration. Effective placement yield depends heavily on machine accuracy and the vision of the system which needs the ability to recognize the features on the board and component to place the device accurately on the pads and bumps of the PCB. There are currently two methods for accurate positioning, using the edge of the package and using solder ball locations also called footprints. The only assumption that a yield model makes is that all boards and devices are completely functional. This paper will focus on the Monte Carlo method which consists in a class of computational algorithms (information processed algorithms) which depends on repeated random samplings in order to compute the results. This method utilized in order to recreate the simulation of placement and assembly processes within a production line.

Hygric Performance of a Sandstone Wall Retrofitted with Interior Thermal Insulation

Temperature, relative humidity and overhygroscopic moisture fields in a sandstone wall provided with interior thermal insulation were calculated in order to assess the hygric performance of the retrofitted wall. Computational simulations showed that during the time period of 10 years which was subject of investigation no overhygroscopic moisture appeared in the analyzed building envelope so that it performed in a satisfactory way from the hygric point of view.

Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum

Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.

Elastic Strain-Concentration Factor of Notched Bars under Combined Loading of Static Tension and Pure Bending

The effect of notch depth on the elastic new strainconcentration factor (SNCF) of rectangular bars with single edge Unotch under combined loading is studied here. The finite element method (FEM) and super position technique are used in the current study. This new SNCF under combined loading of static tension and pure bending has been defined under triaxial stress state. The employed specimens have constant gross thickness of 16.7 mm and net section thickness varied to give net-to-gross thickness ratio ho/Ho from 0.2 to 0.95. The results indicated that the elastic SNCF for combined loading increases with increasing notch depth up to ho/Ho = 0.7 and sharply decreases with increasing notch depth. It is also indicated that the elastic SNCF of combined loading is greater than that of pure bending and less than that of the static tension for 0.2 ≤ ho/Ho ≤ 0.7. However, the elastic SNCF of combined loading is the elastic SNCF for static tension and less than that of pure bending for shallow notches (i.e. 0.8 ≤ ho/Ho ≤ 0.95).

Estimating Correlation Dimension on Japanese Candlestick, Application to FOREX Time Series

Recognizing behavioral patterns of financial markets is essential for traders. Japanese candlestick chart is a common tool to visualize and analyze such patterns in an economic time series. Since the world was introduced to Japanese candlestick charting, traders saw how combining this tool with intelligent technical approaches creates a powerful formula for the savvy investors. This paper propose a generalization to box counting method of Grassberger-Procaccia, which is based on computing the correlation dimension of Japanese candlesticks instead commonly used 'close' points. The results of this method applied on several foreign exchange rates vs. IRR (Iranian Rial). Satisfactorily show lower chaotic dimension of Japanese candlesticks series than regular Grassberger-Procaccia method applied merely on close points of these same candles. This means there is some valuable information inside candlesticks.

High Glucose Increases Acetylcholine-Induced Ca2+ Entry and Protein Expression of STIM1

Hyperglycaemia is a key factor that contributes to the development of diabetes-related microvascular disease and a major risk factor for endothelial dysfunction. In the current study, we have explored glucose-induced abnormal intracellular calcium (Ca2+ i) homeostasis in mouse microvessel endothelial cells (MMECs) in high glucose (HG) (40mmol/L) versus control (low glucose, LG) (11 mmol/L). We demonstrated that the exposure of MMECs to HG for 3 days did not change basal Ca2+ i, however, there was a significant increase of acetylcholine-induced Ca2+ entry. Western blots illustrated that exposure to HG also increased STIM1 (Stromal Interaction Molecule 1), but not Orai1 (the pore forming subunit), protein expression levels. Although the link between HG-induced changes in STIM1 expression, enhanced Ca2+ entry and endothelial dysfunction requires further study, the current data are suggestive that targeting these pathways may reduce the impact of HG on endothelial function.

Transmission Mains Earthing Design: Under Ground to Over Head Pole Transition

The demand on High voltage (HV) infrastructures is growing due to the corresponding growth in industries and population. New or upgraded HV infrastructure has safety implications since Transmission mains usually occupy the same easement in the vicinity of neighbouring residents. Transmission mains consist of underground (UG) and overhead (OH) sections and the transition between the UG and OH section is known as the UGOH pole. The existence of two transmission mains in the same easement can dictate to resort to more complicated earthing design in order to mitigate the effect of AC interference, and in some cases it can also necessitates completing a Split Study of the system. This paper provides an overview of the AC interference, Split Study and the earthing of an underground feeder including the UGOH pole .In addition, this paper discusses the use of different link boxes on the UG feeder and presents a case study that represent a clear example of the Ac interference and Split factor. Finally, a few recommendations are provided to achieve a safety zone in the area beyond the boundary of the HV system.

Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Biological Diagnosis and Physiopathology of von Willebrand-s Disease in a Part of the Algerian Population in the East and the South

Von Willebrand-s disease is the most common inherited bleeding disorder in humans, it caused by qualitative abnormalities of the von Willebrand factor (vWF). Our objective is to determine the prevalence of this disease at part of the Algerian population in the East and the South by a biological diagnosis based on specific biological tests (automated platelet count, the bleeding time (TS), the time of cephalin + activator (TCA), measure of the prothrombin rate (TP), vWF rate and factor VIII rate, Molecular electrophoresis of vWF multimers in agarose gel in the presence of SDS). Four patients of type III or severe Willebrand-s disease were found on 200 suspect cases. All cases are showed a deficit in vWF rate (< 5%), and factor VIII (P

Experimental Study on Damping Ratios of in-situ Buildings

Accurate evaluation of damping ratios involving soilstructure interaction (SSI) effects is the prerequisite for seismic design of in-situ buildings. This study proposes a combined approach to identify damping ratios of SSI systems based on ambient excitation technique. The proposed approach is illustrated with main test process, sampling principle and algorithm steps through an engineering example, as along with its feasibility and validity. The proposed approach is employed for damping ratio identification of 82 buildings in Xi-an, China. Based on the experimental data, the variation range and tendency of damping ratios of these SSI systems, along with the preliminary influence factor, are shown and discussed. In addition, a fitting curve indicates the relation between the damping ratio and fundamental natural period of SSI system.

Exploring Value of Time, Shopping Behavior and Shopping Motivation of International Tourists in the Chatuchak Weekend Market

The purpose of this study was to explore the demographic differences of international tourists according to three main factors, including the value of time, shopping behavior and shopping motivation. The Chatuchak Weekend Market is known as one of the biggest weekend markets in the world. Too little academic studies had been conducted in this area of weekend market, despite its growth and continuous development. In general, both domestic visitors and international tourists are attracted to the perception of cheap and bargaining prices the weekend market. However, systematic research study can provide reliable understanding of the perception of the visitors. This study focused on the group of international tourists who visited the market and aimed to provide better insights based on the differences in their demographic factors. Findings indicated that several differences in value of time, shopping behavior, and shopping motivation were identified by gender, income and age. Research implications and directions for further studies were discussed.

Effect of Chloroform on Aerobic Biodegradation of Organic Solvents in Pharmaceutical Wastewater

In this study, cometabolic biodegradation of chloroform was experimented with mixed cultures in the presence of various organic solvents like methanol, ethanol, isopropanol, acetone, acetonitrile and toluene as these are predominant discharges in pharmaceutical industries. Toluene and acetone showed higher specific chloroform degradation rate when compared to other compounds. Cometabolic degradation of chloroform was further confirmed by observation of free chloride ions in the medium. An extended Haldane model, incorporating the inhibition due to chloroform and the competitive inhibition between primary substrates, was developed to predict the biodegradation of primary substrates, cometabolic degradation of chloroform and the biomass growth. The proposed model is based on the use of biokinetic parameters obtained from single substrate degradation studies. The model was able to satisfactorily predict the experimental results of ternary and quaternary mixtures. The proposed model can be used for predicting the performance of bioreactors treating discharges from pharmaceutical industries.

Determination of Alkaline Protease Production In Serratia Marcescens Sp7 Using Agro Wastes As Substrate Medium, Optimization Of Production Parameters And Purification Of The Enzyme

The enzyme alkaline protease production was determined under solid state fermentation using the soil bacteria Serratia marcescens sp7. The maximum production was obtained from wheat bran medium than ground nut shell and chemically defined medium. The physiological fermentation factors such as pH of the medium (pH 8), Temperature (40oC) and incubation time (48 hrs) played a vital role in alkaline protease production in all the above. 100Mm NaCl has given better resolution during elution of the enzymes. The enzyme production was found to be associated with growth of the bacterial culture.

A Refined Application of QFD in SCM, A New Approach

Due to the fact that in the new century customers tend to express globally increasing demands, networks of interconnected businesses have been established in societies and the management of such networks seems to be a major key through gaining competitive advantages. Supply chain management encompasses such managerial activities. Within a supply chain, a critical role is played by quality. QFD is a widely-utilized tool which serves the purpose of not only bringing quality to the ultimate provision of products or service packages required by the end customer or the retailer, but it can also initiate us into a satisfactory relationship with our initial customer; that is the wholesaler. However, the wholesalers- cooperation is considerably based on the capabilities that are heavily dependent on their locations and existing circumstances. Therefore, it is undeniable that for all companies each wholesaler possesses a specific importance ratio which can heavily influence the figures calculated in the House of Quality in QFD. Moreover, due to the competitiveness of the marketplace today, it-s been widely recognized that consumers- expression of demands has been highly volatile in periods of production. Apparently, such instability and proneness to change has been very tangibly noticed and taking it into account during the analysis of HOQ is widely influential and doubtlessly required. For a more reliable outcome in such matters, this article demonstrates the application viability of Analytic Network Process for considering the wholesalers- reputation and simultaneously introduces a mortality coefficient for the reliability and stability of the consumers- expressed demands in course of time. Following to this, the paper provides further elaboration on the relevant contributory factors and approaches through the calculation of such coefficients. In the end, the article concludes that an empirical application is needed to achieve broader validity.

Pseudo-Homogeneous Kinetic of Dilute-Acid Hydrolysis of Rice Huskfor Ethanol Production: Effect of Sugar Degradation

Rice husk is a lignocellulosic source that can be converted to ethanol. Three hundreds grams of rice husk was mixed with 1 L of 0.18 N sulfuric acid solutions then was heated in an autoclave. The reaction was expected to be at constant temperature (isothermal), but before that temperature was achieved, reaction has occurred. The first liquid sample was taken at temperature of 140 0C and repeated every 5 minute interval. So the data obtained are in the regions of non-isothermal and isothermal. It was observed that the degradation has significant effects on the ethanol production. The kinetic constants can be expressed by Arrhenius equation with the frequency factors for hydrolysis and sugar degradation of 1.58 x 105 min-1 and 2.29 x 108 L/mole-min, respectively, while the activation energies are 64,350 J/mole and 76,571 J/mole. The highest ethanol concentration from fermentation is 1.13% v/v, attained at 220 0C.

Spatial Planning as an Approach to Achieve Sustainable Development in Historic Cities

Sustainable development is a concept which was originated in Burtland commission in 1978. Although this concept was born with environmental aspects, it is penetrated in all areas rapidly, turning into a dominate view of planning. Concentrating on future generation issue, especially when talking about heritage has a long story. Each approach with all of its characteristics illustrates differences in planning, hence planning always reflects the dominate idea of its age. This paper studies sustainable development in planning for historical cities with the aim of finding ways to deal with heritage in planning for historical cities in Iran. Through this, it will be illustrated how challenges between sustainable concept and heritage could be concluded in planning. Consequently, the paper will emphasize on: Sustainable development in city planning Trends regarding heritage Challenges due to planning for historical cities in Iran For the first two issues, documentary method regarding the sustainable development and heritage literature is considered. As the next step focusing on Iranian historical cities require considering the urban planning and management structure and identifying the main challenges related to heritage, so analyzing challenges regarding heritage is considered. As the result it would be illustrated that key issue in such planning is active conservation to improve and use the potential of heritage while it's continues conservation is guaranteed. By emphasizing on the planning system in Iran it will be obvious that some reforms are needed in this system and its way of relating with heritage. The main weakness in planning for historical cities in Iran is the lack of independent city management. Without this factor achieving active conservation as the main factor of sustainable development would not be possible.

Collaborative Document Evaluation: An Alternative Approach to Classic Peer Review

Research papers are usually evaluated via peer review. However, peer review has limitations in evaluating research papers. In this paper, Scienstein and the new idea of 'collaborative document evaluation' are presented. Scienstein is a project to evaluate scientific papers collaboratively based on ratings, links, annotations and classifications by the scientific community using the internet. In this paper, critical success factors of collaborative document evaluation are analyzed. That is the scientists- motivation to participate as reviewers, the reviewers- competence and the reviewers- trustworthiness. It is shown that if these factors are ensured, collaborative document evaluation may prove to be a more objective, faster and less resource intensive approach to scientific document evaluation in comparison to the classical peer review process. It is shown that additional advantages exist as collaborative document evaluation supports interdisciplinary work, allows continuous post-publishing quality assessments and enables the implementation of academic recommendation engines. In the long term, it seems possible that collaborative document evaluation will successively substitute peer review and decrease the need for journals.