A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Development of Anterior Lumbar Interbody Fusion (ALIF) PEEK Cage Based On the Korean Lumbar Anatomical Information

The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIFPEEK Cage prototype was compared with the Fidji Cage (Zimmer. Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.

Analysis of a Coupled Hydro-Sedimentological Numerical Model for the Tombolo of GIENS

The western Tombolo of the Giens peninsula in southern France, known as Almanarre beach, is subject to coastal erosion. We are trying to use computer simulation in order to propose solutions to stop this erosion. Our aim was first to determine the main factors for this erosion and successfully apply a coupled hydrosedimentological numerical model based on observations and measurements that have been performed on the site for decades. We have gathered all available information and data about waves, winds, currents, tides, bathymetry, coastal line, and sediments concerning the site. These have been divided into two sets: one devoted to calibrating a numerical model using Mike 21 software, the other to serve as a reference in order to numerically compare the present situation to what it could be if we implemented different types of underwater constructions. This paper presents the first part of the study: selecting and melting different sources into a coherent data basis, identifying the main erosion factors, and calibrating the coupled software model against the selected reference period. Our results bring calibration of the numerical model with good fitting coefficients. They also show that the winter South-Western storm events conjugated to depressive weather conditions constitute a major factor of erosion, mainly due to wave impact in the northern part of the Almanarre beach. Together, current and wind impact is shown negligible.

Effects of IPPC Permits on Ambient Air Quality

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in specific territory with high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting to assess the possible industrial sources contributions to air pollution.

A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications

This study is concerned with the optimization of fermentation parameters for the hyper production of mannanase from Fusarium oxysporum SS-25 employing two step statistical strategy and kinetic characterization of crude enzyme preparation. The Plackett-Burman design used to screen out the important factors in the culture medium revealed 20% (w/w) wheat bran, 2% (w/w) each of potato peels, soyabean meal and malt extract, 1% tryptone, 0.14% NH4SO4, 0.2% KH2PO4, 0.0002% ZnSO4, 0.0005% FeSO4, 0.01% MnSO4, 0.012% SDS, 0.03% NH4Cl, 0.1% NaNO3 in brewer’s spent grain based medium with 50% moisture content, inoculated with 2.8×107 spores and incubated at 30oC for 6 days to be the main parameters influencing the enzyme production. Of these factors, four variables including soyabean meal, FeSO4, MnSO4 and NaNO3 were chosen to study the interactive effects and their optimum levels in central composite design of response surface methodology with the final mannanase yield of 193 IU/gds. The kinetic characterization revealed the crude enzyme to be active over broader temperature and pH range. This could result in 26.6% reduction in kappa number with 4.93% higher tear index and 1% increase in brightness when used to treat the wheat straw based kraft pulp. The hydrolytic potential of enzyme was also demonstrated on both locust bean gum and guar gum.

Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber

Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.

Automatic Enhanced Update Summary Generation System for News Documents

Fast changing knowledge systems on the Internet can be accessed more efficiently with the help of automatic document summarization and updating techniques. The aim of multi-document update summary generation is to construct a summary unfolding the mainstream of data from a collection of documents based on the hypothesis that the user has already read a set of previous documents. In order to provide a lot of semantic information from the documents, deeper linguistic or semantic analysis of the source documents were used instead of relying only on document word frequencies to select important concepts. In order to produce a responsive summary, meaning oriented structural analysis is needed. To address this issue, the proposed system presents a document summarization approach based on sentence annotation with aspects, prepositions and named entities. Semantic element extraction strategy is used to select important concepts from documents which are used to generate enhanced semantic summary.

Mean Velocity Modeling of Open-Channel Flow with Submerged Rigid Vegetation

Vegetation affects the mean and turbulent flow structure. It may increase flood risks and sediment transport. Therefore, it is important to develop analytical approaches for the bed shear stress on vegetated bed, to predict resistance caused by vegetation. In the recent years, experimental and numerical models have both been developed to model the effects of submerged vegetation on open-channel flow. In this paper, different analytic models are compared and tested using the criteria of deviation, to explore their capacity for predicting the mean velocity and select the suitable one that will be applied in real case of rivers. The comparison between the measured data in vegetated flume and simulated mean velocities indicated, a good performance, in the case of rigid vegetation, whereas, Huthoff model shows the best agreement with a high coefficient of determination (R2=80%) and the smallest error in the prediction of the average velocities.

An Alternative Proof for the Topological Entropy of the Motzkin Shift

A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron- Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift, x will be in the Motzkin subshift M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, a new direct method of calculating the topological entropy of the Motzkin shift is given without any measure theoretical discussion.

Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy

In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.

Towards an Intelligent Ontology Construction Cost Estimation System: Using BIM and New Rules of Measurement Techniques

Construction cost estimation is one of the most important aspects of construction project design. For generations, the process of cost estimating has been manual, time-consuming and error-prone. This has partly led to most cost estimates to be unclear and riddled with inaccuracies that at times lead to over- or underestimation of construction cost. The development of standard set of measurement rules that are understandable by all those involved in a construction project, have not totally solved the challenges. Emerging Building Information Modelling (BIM) technologies can exploit standard measurement methods to automate cost estimation process and improve accuracies. This requires standard measurement methods to be structured in ontological and machine readable format; so that BIM software packages can easily read them. Most standard measurement methods are still text-based in textbooks and require manual editing into tables or Spreadsheet during cost estimation. The aim of this study is to explore the development of an ontology based on New Rules of Measurement (NRM) commonly used in the UK for cost estimation. The methodology adopted is Methontology, one of the most widely used ontology engineering methodologies. The challenges in this exploratory study are also reported and recommendations for future studies proposed.

MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag- Ni (60/40) Contact Materials

The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silvernickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196- 256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.

Long-Term Follow-up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining and Posterior Stabilized Total Knee Arthroplasty

Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel un-satisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for groups I, II and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks preand post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months postoperatively in groups I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months postoperatively in groups I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.

Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analyzed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Model-Based Automotive Partitioning and Mapping for Embedded Multicore Systems

This paper introduces novel approaches to partitioning and mapping in terms of model-based embedded multicore system engineering and further discusses benefits, industrial relevance and features in common with existing approaches. In order to assess and evaluate results, both approaches have been applied to a real industrial application as well as to various prototypical demonstrative applications, that have been developed and implemented for different purposes. Evaluations show, that such applications improve significantly according to performance, energy efficiency, meeting timing constraints and covering maintaining issues by using the AMALTHEA platform and the implemented approaches. Furthermore, the model-based design provides an open, expandable, platform independent and scalable exchange format between OEMs, suppliers and developers on different levels. Our proposed mechanisms provide meaningful multicore system utilization since load balancing by means of partitioning and mapping is effectively performed with regard to the modeled systems including hardware, software, operating system, scheduling, constraints, configuration and more data.

Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosa (PS1), and Pseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazinon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 10^12CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Scale Development for Measuring E-Service Quality in Banking

This study examines several critical dimensions of eservice quality overlooked in the existing literature and proposes a model and instrument framework for measuring customer perceived e-service quality in the banking sector. The initial design was derived from a pool of instrument dimensions and their items from the existing literature review by content analysis. Based on focused group discussion, nine dimensions were extracted. An exploratory factor analysis approach was applied to data from a survey of 323 respondents. The instrument has been designed specifically for the banking sector. Research data was collected from bank customers who use electronic banking in a developing economy. A nine-factor instrument has been proposed to measure the e-service quality. The instrument has been checked for reliability. The validity and sample place limited the applicability of the instrument across economies and service categories. Future research must be conducted to check the validity. This instrument can help bankers in developing economies like India to measure the e-service quality and make improvements. The present study offers a systematic procedure that provides insights on to the conceptual and empirical comprehension of customer perceived e-service quality and its constituents.