An Empirical Study of the Expectation- Perception Gap of I.S. Development

This paper adopts a notion of expectation-perception gap of systems users as information systems (IS) failure. Problems leading to the expectation-perception gap are identified and modelled as five interrelated discrepancies or gaps throughout the process of information systems development (ISD). It describes an empirical study on how systems developers and users perceive the size of each gap and the extent to which each problematic issue contributes to the gap. The key to achieving success in ISD is to keep the expectationperception gap closed by closing all 5 pertaining gaps. The gap model suggests that most factors in IS failure are related to organizational, cognitive and social aspects of information systems design. Organization requirement analysis, being the weakest link of IS development, is particularly worthy of investigation.

Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram. To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

Improved Approximation to the Derivative of a Digital Signal Using Wavelet Transforms for Crosstalk Analysis

The information revealed by derivatives can help to better characterize digital near-end crosstalk signatures with the ultimate goal of identifying the specific aggressor signal. Unfortunately, derivatives tend to be very sensitive to even low levels of noise. In this work we approximated the derivatives of both quiet and noisy digital signals using a wavelet-based technique. The results are presented for Gaussian digital edges, IBIS Model digital edges, and digital edges in oscilloscope data captured from an actual printed circuit board. Tradeoffs between accuracy and noise immunity are presented. The results show that the wavelet technique can produce first derivative approximations that are accurate to within 5% or better, even under noisy conditions. The wavelet technique can be used to calculate the derivative of a digital signal edge when conventional methods fail.

Fingerprint Compression Using Contourlet Transform and Multistage Vector Quantization

This paper presents a new fingerprint coding technique based on contourlet transform and multistage vector quantization. Wavelets have shown their ability in representing natural images that contain smooth areas separated with edges. However, wavelets cannot efficiently take advantage of the fact that the edges usually found in fingerprints are smooth curves. This issue is addressed by directional transforms, known as contourlets, which have the property of preserving edges. The contourlet transform is a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks. The computation and storage requirements are the major difficulty in implementing a vector quantizer. In the full-search algorithm, the computation and storage complexity is an exponential function of the number of bits used in quantizing each frame of spectral information. The storage requirement in multistage vector quantization is less when compared to full search vector quantization. The coefficients of contourlet transform are quantized by multistage vector quantization. The quantized coefficients are encoded by Huffman coding. The results obtained are tabulated and compared with the existing wavelet based ones.

To Design Holistic Health Service Systems on the Internet

There are different kinds of online systems on the Internet for people who need support and develop new knowledge. Online communities and Ask the Expert systems are two such systems. In the health care area, the number of users of these systems has increased at a rapid pace. Interactions with medical trained experts take place online, and people with concerns about similar health problems come together to share experiences and advice. The systems are also used as storages and browsed for health information. Over the years, studies have been conducted of the usage of the different systems. However, in what ways the systems can be used together to enhance learning has not been explored. This paper presents results from a study of online health-communities and an Ask the Expert system for people who suffer from overweight. Differences and similarities in regards to posted issues and replies are discussed, and suggestions for a new holistic design of the two systems are presented.

Web-GIS based Outdoor Education Program for Junior High Schools

This study, focusing on the importance of encouraging outdoor activities for children, aims to propose and implement a Web-GIS based outdoor education program for junior high schools, which will then be evaluated by users. Specifically, for the purpose of improved outdoor activities in the junior high school education, the outdoor education program, with chiefly using the Web-GIS that provides a good information provision and sharing tool, is proposed and implemented before being evaluated by users. The conclusion of this study can be summarized in the following two points. (1) A five -step outdoor education program based on Web-GIS was proposed for a “second school" at junior high schools that was then implemented before being evaluated by teachers as users. (2) Based on the results of evaluation by teachers, it was clear that the general operation of Web-GIS based outdoor education program with them only is difficult due to their lack of knowledge regarding Web-GIS and that support staff who can effectively utilize Web-GIS are essential.

Hospital Based Electrocardiogram Sensor Grid

The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.

Extraction of Knowledge Complexity in 3G Killer Application Construction for Telecommunications National Strategy

We review a knowledge extractor model in constructing 3G Killer Applications. The success of 3G is essential for Government as it became part of Telecommunications National Strategy. The 3G wireless technologies may reach larger area and increase country-s ICT penetration. In order to understand future customers needs, the operators require proper information (knowledge) lying inside. Our work approached future customers as complex system where the complex knowledge may expose regular behavior. The hidden information from 3G future customers is revealed by using fractal-based questionnaires. Afterward, further statistical analysis is used to match the results with operator-s strategic plan. The developments of 3G applications also consider its saturation time and further improvement of the application.

A Novel Approach for Protein Classification Using Fourier Transform

Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.

Risk Evaluation of Information Technology Projects Based on Fuzzy Analytic Hierarchal Process

Information Technology (IT) projects are always accompanied by various risks and because of high rate of failure in such projects, managing risks in order to neutralize or at least decrease their effects on the success of the project is strongly essential. In this paper, fuzzy analytical hierarchy process (FAHP) is exploited as a means of risk evaluation methodology to prioritize and organize risk factors faced in IT projects. A real case of IT projects, a project of design and implementation of an integrated information system in a vehicle producing company in Iran is studied. Related risk factors are identified and then expert qualitative judgments about these factors are acquired. Translating these judgments to fuzzy numbers and using them as an input to FAHP, risk factors are then ranked and prioritized by FAHP in order to make project managers aware of more important risks and enable them to adopt suitable measures to deal with these highly devastative risks.

Studies on Automatic Measurement Technology for Surface Braided Angle of Three-Dimensional Braided Composite Material Performs

This paper describes a new measuring algorithm for three-dimensional (3-D) braided composite material .Braided angle is an important parameter of braided composites. The objective of this paper is to present an automatic measuring system. In the paper, the algorithm is performed by using vcµ6.0 language on PC. An advanced filtered algorithm for image of 3-D braided composites material performs has been developed. The procedure is completely automatic and relies on the gray scale information content of the images and their local wavelet transform modulus maxims. Experimental results show that the proposed method is feasible. The algorithm was tested on both carbon-fiber and glass-fiber performs.

Implementation of SU-MIMO and MU-MIMOGTD-System under Imperfect CSI Knowledge

We study the performance of compressed beamforming weights feedback technique in generalized triangular decomposition (GTD) based MIMO system. GTD is a beamforming technique that enjoys QoS flexibility. The technique, however, will perform at its optimum only when the full knowledge of channel state information (CSI) is available at the transmitter. This would be impossible in the real system, where there are channel estimation error and limited feedback. We suggest a way to implement the quantized beamforming weights feedback, which can significantly reduce the feedback data, on GTD-based MIMO system and investigate the performance of the system. Interestingly, we found that compressed beamforming weights feedback does not degrade the BER performance of the system at low input power, while the channel estimation error and quantization do. For comparison, GTD is more sensitive to compression and quantization, while SVD is more sensitive to the channel estimation error. We also explore the performance of GTDbased MU-MIMO system, and find that the BER performance starts to degrade largely at around -20 dB channel estimation error.

Modeling and Design of an Active Leg Orthosis for Tumble Protection

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Optimal Aggregate Production Planning with Fuzzy Data

This paper investigates the optimization problem of multi-product aggregate production planning (APP) with fuzzy data. From a comprehensive viewpoint of conserving the fuzziness of input information, this paper proposes a method that can completely describe the membership function of the performance measure. The idea is based on the well-known Zadeh-s extension principle which plays an important role in fuzzy theory. In the proposed solution procedure, a pair of mathematical programs parameterized by possibility level a is formulated to calculate the bounds of the optimal performance measure at a . Then the membership function of the optimal performance measure is constructed by enumerating different values of a . Solutions obtained from the proposed method contain more information, and can offer more chance to achieve the feasible disaggregate plan. This is helpful to the decision-maker in practical applications.

Risk Management Analysis: An Empirical Study Using Bivariate GARCH

This study employs a bivariate asymmetric GARCH model to reveal the hidden dynamics price changes and volatility among the emerging markets of Thailand and Malaysian after the Asian financial crisis from January 2001 to December 2008. Our results indicated that the equity markets are sharing the common information (shock) that transmitted among each others. These empirical findings are used to demonstrate the importance of shock and volatility dynamic transmissions in the cross-market hedging and market risk.

An Interactive Ontology Visualization Approach for the Networked Home Environment

Ontologies are broadly used in the context of networked home environments. With ontologies it is possible to define and store context information, as well as to model different kinds of physical environments. Ontologies are central to networked home environments as they carry the meaning. However, ontologies and the OWL language is complex. Several ontology visualization approaches have been developed to enhance the understanding of ontologies. The domain of networked home environments sets some special requirements for the ontology visualization approach. The visualization tool presented here, visualizes ontologies in a domain-specific way. It represents effectively the physical structures and spatial relationships of networked home environments. In addition, it provides extensive interaction possibilities for editing and manipulating the visualization. The tool shortens the gap from beginner to intermediate OWL ontology reader by visualizing instances in their actual locations and making OWL ontologies more interesting and concrete, and above all easier to comprehend.

A Conceptual Framework for Supply Chain Competitiveness

The purpose of this paper is to highlight the importance of the concept of competitiveness in the supply chain and to present a conceptual framework for Supply Chain Competitiveness (SCC). The framework is based on supply chain activities, which are inputs, necessary for SCC and the benefits which are the outputs of SCC. A literature review is conducted on key supply chain competitiveness issues, its determinants, its various dimensions followed by exploration for SCC. Based on the insights gained, a conceptual framework for SCC is presented based on activities for SCC, SCC environment and outcomes of SCC. The information flow in the conceptual framework is bi-directional at all levels and the activities are interrelated in a global competitive environment. The activities include the activities of suppliers, manufacturers and distributors, giving more emphasis on manufacturers- activities. Further, implications of various factors such as economic, politicolegal, technical, socio-cultural, competition, demographic etc. are also highlighted. The SCC framework is an attempt to cover the relatively less explored area of supply chain competitiveness. It is expected that this work will further motivate researchers, academicians and practitioners to work in this area and offers conceptual help in providing a directions for supply chain competitiveness which leads to improvement in the supply chain and supply chain performance.

Genetic Content-Based MP3 Audio Watermarking in MDCT Domain

In this paper a novel scheme for watermarking digital audio during its compression to MPEG-1 Layer III format is proposed. For this purpose we slightly modify some of the selected MDCT coefficients, which are used during MPEG audio compression procedure. Due to the possibility of modifying different MDCT coefficients, there will be different choices for embedding the watermark into audio data, considering robustness and transparency factors. Our proposed method uses a genetic algorithm to select the best coefficients to embed the watermark. This genetic selection is done according to the parameters that are extracted from the perceptual content of the audio to optimize the robustness and transparency of the watermark. On the other hand the watermark security is increased due to the random nature of the genetic selection. The information of the selected MDCT coefficients that carry the watermark bits, are saves in a database for future extraction of the watermark. The proposed method is suitable for online MP3 stores to pursue illegal copies of musical artworks. Experimental results show that the detection ratio of the watermarks at the bitrate of 128kbps remains above 90% while the inaudibility of the watermark is preserved.

Generational Differences in Perception of Affective Climate Antecedents

This study aims to explore the differences and similarities in perceptions of affective climate antecedents at the workplace (intimacy, flexibility, employment stability, and team) among Japanese and Thai Generations X and Y. The samples in this study were Thai and Japanese workers who completed a work environment questionnaire and provided demographic information. Generational differences in perceptions (beliefs) of what factors contribute to affective climate were investigated using t-test analysis. Mean scores for each antecedent were ranked to determine how each generation in each group prioritized the importance of all affective climate antecedents. Japanese Generation Y perceived the importance of employment stability for affective climate of their workplaces to be significantly higher than did Japanese Generation X. Thai Generation Y considered flexibility with a higher priority than did Thai Generation X. Intimacy was perceived as highly important across generations and countries in regard to affective climate. Results suggest that managers should design workplaces for a mixture of diverse generations, resulting in a better affective climate. Differences in the importance of antecedents for affective climate among Generations X and Y in two countries were clarified. In addition, different preferences regarding work environment across Japanese Generations X and Y and Thai Generations X and Y were discussed.