Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Receive and Transmit Array Antenna Spacingand Their Effect on the Performance of SIMO and MIMO Systems by using an RCS Channel Model

In this paper, the effect of receive and/or transmit antenna spacing on the performance (BER vs. SNR) of multipleantenna systems is determined by using an RCS (Radar Cross Section) channel model. In this physical model, the scatterers existing in the propagation environment are modeled by their RCS so that the correlation of the receive signal complex amplitudes, i.e., both magnitude and phase, can be estimated. The proposed RCS channel model is then compared with classical models.

A Study on Reducing Malicious Replies on the Internet: An Approach by Game Theory

Since the advent of the information era, the Internet has brought various positive effects in everyday life. Nevertheless, recently, problems and side-effects have been noted. Internet witch-trials and spread of pornography are only a few of these problems.In this study, problems and causes of malicious replies on internet boards were analyzed, using the key ideas of game theory. The study provides a mathematical model for the internet reply game to devise three possible plans that could efficiently counteract malicious replies. Furthermore, seven specific measures that comply with one of the three plans were proposed and evaluated according to the importance and utility of each measure using the orthogonal array survey and SPSS conjoint analysis.The conclusion was that the most effective measure would be forbidding unsigned user access to malicious replies. Also notable was that some analytically proposed measures, when implemented, could backfire and encourage malicious replies.

Mining Sequential Patterns Using I-PrefixSpan

In this paper, we propose an improvement of pattern growth-based PrefixSpan algorithm, called I-PrefixSpan. The general idea of I-PrefixSpan is to use sufficient data structure for Seq-Tree framework and separator database to reduce the execution time and memory usage. Thus, with I-PrefixSpan there is no in-memory database stored after index set is constructed. The experimental result shows that using Java 2, this method improves the speed of PrefixSpan up to almost two orders of magnitude as well as the memory usage to more than one order of magnitude.

A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Synthetic Transmit Aperture Method in Medical Ultrasonic Imaging

The work describes the use of a synthetic transmit aperture (STA) with a single element transmitting and all elements receiving in medical ultrasound imaging. STA technique is a novel approach to today-s commercial systems, where an image is acquired sequentially one image line at a time that puts a strict limit on the frame rate and the amount of data needed for high image quality. The STA imaging allows to acquire data simultaneously from all directions over a number of emissions, and the full image can be reconstructed. In experiments a 32-element linear transducer array with 0.48 mm inter-element spacing was used. Single element transmission aperture was used to generate a spherical wave covering the full image region. The 2D ultrasound images of wire phantom are presented obtained using the STA and commercial ultrasound scanner Antares to demonstrate the benefits of the SA imaging.

Dimension Reduction of Microarray Data Based on Local Principal Component

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Noise-Improved Signal Detection in Nonlinear Threshold Systems

We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.

A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor

In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.

FPGA Implementation of the “PYRAMIDS“ Block Cipher

The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.

Spacecraft Neural Network Control System Design using FPGA

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

A Sub Pixel Resolution Method

One of the main limitations for the resolution of optical instruments is the size of the sensor-s pixels. In this paper we introduce a new sub pixel resolution algorithm to enhance the resolution of images. This method is based on the analysis of multiimages which are fast recorded during the fine relative motion of image and pixel arrays of CCDs. It is shown that by applying this method for a sample noise free image one will enhance the resolution with 10-14 order of error.

Tuning of PV Array Layout Configurations for Maximum Power Delivery

In this paper, an approach for finding optimized layouts for connecting PV units delivering maximum array output power is suggested. The approach is based on considering the different varying parameters of PV units that might be extracted from a general two-diode model. These are mainly, solar irradiation, reverse saturation currents, ideality factors, series and shunt resistances in addition to operating temperature. The approach has been tested on 19 possible 2×3 configurations and allowed to determine the optimized configurations as well as examine the effects of the different units- parameters on the maximum output power. Thus, using this approach, standard arrays with n×m units can be configured for maximum generated power and allows designing PV based systems having reduced surfaces to fit specific required power, as it is the case for solar cars and other mobile systems.

Shadow Imaging Study of Z-Pinch Dynamic Hohlraum

In order to obtaining the dynamic evolution image of Tungsten array for foam padding, and to research the form of interaction between Tungsten plasma and foam column, a shadow imaging system of four-frame ultraviolet probe laser (266nm)has been designed on 1MA pulse power device. The time resolution of the system is 2.5ns, and static space resolution is superior to 70μm. The radial shadowgraphy image reveals the whole process from the melting and expansion of solid wire to the interaction of the precursor plasma and the foam, from the pinch to rebound inflation. The image shows the continuous interaction of Tungsten plasma and foam in a form of “Raining" within a time of about 50ns, the plasma shell structure has not been found in the whole period of pinch. The quantitative analysis indicates the minimum pinching speed of the foam column is 1.0×106cm/s, and maximum pinching speed is 6.0×106cm/s, and the axial stagnation diameter is approx 1mm.

Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis

DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression.

Isotropic Stress Distribution in Cu/(001) Fe Two Sheets

The nanotechnology based on epitaxial systems includes single or arranged misfit dislocations. In general, whatever is the type of dislocation or the geometry of the array formed by the dislocations; it is important for experimental studies to know exactly the stress distribution for which there is no analytical expression [1, 2]. This work, using a numerical analysis, deals with relaxation of epitaxial layers having at their interface a periodic network of edge misfit dislocations. The stress distribution is estimated by using isotropic elasticity. The results show that the thickness of the two sheets is a crucial parameter in the stress distributions and then in the profile of the two sheets. A comparative study between the case of single dislocation and the case of parallel network shows that the layers relaxed better when the interface is covered by a parallel arrangement of misfit. Consequently, a single dislocation at the interface produces an important stress field which can be reduced by inserting a parallel network of dislocations with suitable periodicity.

Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

Using Submerge Fermentation Method to Production of Extracellular Lipase by Aspergillus niger

In this study, lipase production has been investigated using submerge fermentation by Aspergillus niger in Kilka fish oil as main substrate. The Taguchi method with an L9 orthogonal array design was used to investigate the effect of parameters and their levels on lipase productivity. The optimum conditions for Kilka fish oil concentration, incubation temperature and pH were obtained 3 gr./ml 35°C and 7, respectively. The amount of lipase activity in optimum condition was obtained 4.59IU/ml. By comparing this amount with the amount of productivity in the olive oil medium based on the cost of each medium, it was that using Kilka fish oil is 84% economical. Therefore Kilka fish oil can be used as an economical and suitable substrate in the lipase production and industrial usages.