A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection

Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.

Privacy Issues in Pervasive Healthcare Monitoring System: A Review

Privacy issues commonly discussed among researchers, practitioners, and end-users in pervasive healthcare. Pervasive healthcare systems are applications that can support patient-s need anytime and anywhere. However, pervasive healthcare raises privacy concerns since it can lead to situations where patients may not be aware that their private information is being shared and becomes vulnerable to threat. We have systematically analyzed the privacy issues and present a summary in tabular form to show the relationship among the issues. The six issues identified are medical information misuse, prescription leakage, medical information eavesdropping, social implications for the patient, patient difficulties in managing privacy settings, and lack of support in designing privacy-sensitive applications. We narrow down the issues and chose to focus on the issue of 'lack of support in designing privacysensitive applications' by proposing a privacy-sensitive architecture specifically designed for pervasive healthcare monitoring systems.

Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography

Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.

Financial Regulations in the Process of Global Financial Crisis and Macroeconomics Impact of Basel III

Basel III (or the Third Basel Accord) is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk agreed upon by the members of the Basel Committee on Banking Supervision in 2010-2011, and scheduled to be introduced from 2013 until 2018. Basel III is a comprehensive set of reform measures. These measures aim to; (1) improve the banking sector-s ability to absorb shocks arising from financial and economic stress, whatever the source, (2) improve risk management and governance, (3) strengthen banks- transparency and disclosures. Similarly the reform target; (1) bank level or micro-prudential, regulation, which will help raise the resilience of individual banking institutions to periods of stress. (2) Macro-prudential regulations, system wide risk that can build up across the banking sector as well as the pro-cyclical implication of these risks over time. These two approaches to supervision are complementary as greater resilience at the individual bank level reduces the risk system wide shocks. Macroeconomic impact of Basel III; OECD estimates that the medium-term impact of Basel III implementation on GDP growth is in the range -0,05 percent to -0,15 percent per year. On the other hand economic output is mainly affected by an increase in bank lending spreads as banks pass a rise in banking funding costs, due to higher capital requirements, to their customers. Consequently the estimated effects on GDP growth assume no active response from monetary policy. Basel III impact on economic output could be offset by a reduction (or delayed increase) in monetary policy rates by about 30 to 80 basis points. The aim of this paper is to create a framework based on the recent regulations in order to prevent financial crises. Thus the need to overcome the global financial crisis will contribute to financial crises that may occur in the future periods. In the first part of the paper, the effects of the global crisis on the banking system examine the concept of financial regulations. In the second part; especially in the financial regulations and Basel III are analyzed. The last section in this paper explored the possible consequences of the macroeconomic impacts of Basel III.

Bioethanol - A Viable Answer to India-s Surging Energy Needs

India is currently the second most populous nation in the world with over 1.2 billion people, growing annually at the rate of 1.5%. It is experiencing a surge in energy demands, expected to grow more than three to four times in 25 years. Most of the energy requirements are currently satisfied by the import of fossil fuels – coal, petroleum-based products and natural gas. Biofuels can satisfy these energy needs in an environmentally benign and cost effective manner while reducing dependence on import of fossil fuels, thus providing National Energy Security. Among various forms of bioenergy, bioethanol is one of the major options for India because of availability of feed stock crops. This paper presents an overview on bioethanol production and technology, steps taken by the Indian government to facilitate and bring about optimal development and utilization of indigenous biomass feedstocks for production of this biofuel.

Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks

This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.

Raman Scattering and PL Studies on AlGaN/GaN HEMT Layers on 200 mm Si(111)

The crystalline quality of the AlGaN/GaN high electron mobility transistor (HEMT) structure grown on a 200 mm silicon substrate has been investigated using UV-visible micro- Raman scattering and photoluminescence (PL). The visible Raman scattering probes the whole nitride stack with the Si substrate and shows the presence of a small component of residual in-plane stress in the thick GaN buffer resulting from a wafer bowing, while the UV micro-Raman indicates a tensile interfacial stress induced at the top GaN/AlGaN/AlN layers. PL shows a good crystal quality GaN channel where the yellow band intensity is very low compared to that of the near-band-edge transition. The uniformity of this sample is shown by measurements from several points across the epiwafer.

An FPGA Implementation of Intelligent Visual Based Fall Detection

Falling has been one of the major concerns and threats to the independence of the elderly in their daily lives. With the worldwide significant growth of the aging population, it is essential to have a promising solution of fall detection which is able to operate at high accuracy in real-time and supports large scale implementation using multiple cameras. Field Programmable Gate Array (FPGA) is a highly promising tool to be used as a hardware accelerator in many emerging embedded vision based system. Thus, it is the main objective of this paper to present an FPGA-based solution of visual based fall detection to meet stringent real-time requirements with high accuracy. The hardware architecture of visual based fall detection which utilizes the pixel locality to reduce memory accesses is proposed. By exploiting the parallel and pipeline architecture of FPGA, our hardware implementation of visual based fall detection using FGPA is able to achieve a performance of 60fps for a series of video analytical functions at VGA resolutions (640x480). The results of this work show that FPGA has great potentials and impacts in enabling large scale vision system in the future healthcare industry due to its flexibility and scalability.

Therapeutic Product Preparation Bioprocess Modeling

An immunomodulator bioproduct is prepared in a batch bioprocess with a modified bacterium Pseudomonas aeruginosa. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The optimal bioprocess parameters were determined: temperature – 37 0C, agitation speed - 300 rpm, aeration rate – 40 L/min, pressure – 0.5 bar, Dow Corning Antifoam M-max. 4 % of the medium volume, duration - 6 hours. This kind of bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying. The aim of the paper is to present (by comparison) different models based on experimental data. The analysis criteria were modeling error and convergence rate. The estimated values and the modeling analysis were done by using the Table Curve 2D. The preliminary conclusions indicate Andrews-s model with a maximum specific growth rate of the bacterium in the range of 0.8 h-1.

Baking Quality of Hulled Wheat Species in Organic Farming

The organic farmers use wider range of crop varieties than the conventional farming. Bread wheat is the most favorite and the most common food crop. The organic bread wheat is usually of worse technological quality. Therefore, it is supposed to be an attractive alternative to the hulled wheat species (einkorn, emmer wheat and spelt). Twenty-five hulled bread wheat varieties and control bread wheat ones were grown on the certified organic parcel in České Budějovice (the Czech Republic) between 2009 and 2012. Their baking quality was measured and evaluated with standard methods, and in accordance with ICC. The results have shown that the grain of hulled wheat varieties contain a lot of proteins in grains (up to 18 percent); even the organic hulled bread wheat varieties are characterized by such good baking quality. Einkorn and emmer wheat are of worse technological quality of proteins (low values of gluten index and Zeleny test), which is a disadvantage of these two wheat species. On the other hand, spelt wheat is of better technological quality and is similar to the control bread wheat varieties. Mixtures consisting of bread wheat, among others, are considered good alternatives; they may contribute to wider range of use of the hulled wheat species. It is one of the possibilities which may increase the proportion of proteins in bread wheat grains; the nutrition-rich hulled wheat grains may be also used in such way at the same time.

Creation of Economic and Social Value by Social Entrepreneurship for Sustainable Development

The ever growing sentiment of environmentalism across the globe has made many people think on the green lines. But most of such ideas halt short of implementation because of the short term economic viability issues with the concept of going green. In this paper we have tried to amalgamate the green concept with social entrepreneurship for solving a variety of issues faced by the society today. In addition the paper also tries to ensure that the short term economic viability does not act as a deterrent. The paper comes up three sustainable models of social entrepreneurship which tackle a wide assortment of issues such as nutrition problem, land problems, pollution problems and employment problems. The models described fall under the following heads: - Spirulina cultivation: The model addresses nutrition, land and employment issues. It deals with cultivation of a blue green alga called Spirulina which can be used as a very nutritious food. Also, the implementation of this model would bring forth employment to the poor people of the area. - Biocomposites: The model comes up with various avenues in which biocomposites can be used in an economically sustainable manner. This model deals with the environmental concerns and addresses the depletion of natural resources. - Packaging material from empty fruit bunches (EFB) of oil palm: This one deals with air and land pollution. It is intended to be a substitute for packaging materials made from Styrofoam and plastics which are non-biodegradable. It takes care of the biodegradability and land pollution issues. It also reduces air pollution as the empty fruit bunches are not incinerated. All the three models are sustainable and do not deplete the natural resources any further. This paper explains each of the models in detail and deals with the operational/manufacturing procedures and cost analysis while also throwing light on the benefits derived and sustainability aspects.

Surveying the Environmental Biology Effects of Esfahan Factories on Zayandehrood Pollution

Water is the key of national development. Wherever a spring has been dried out or a river has changed its course, the area-s people have migrated and have been scattered and the area-s civilization has lost its brilliance. Today, air pollution, global warming and ozone layer damage are as the problems of countries, but certainly in the next decade the shortage and pollution of waters will be important issues of the world. The polluted waters are more dangerous in when they are used in agriculture. Because they infect plants and these plants are used in human and livestock consumption in food chain. With the increasing population growth and after that, the increase need to facilities and raw materials, human beings has started to do haste actions and wanted or unwanted destroyed his life basin. They try to overuse and capture his environment extremely, instead of having futurism approach in sustainable use of nature. This process includes Zayanderood recession, and caused its pollution after the transition from industrial and urban areas. Zayandehrood River in Isfahan is a vital artery of a living ecosystem. Now is the location of disposal waste water of many cities, villages and existing industries. The central area of the province is an important industrial place, and its environmental situation has reached a critical stage. Not only a large number of pollution-generating industries are active in the city limits, but outside of the city and adjacent districts Zayandehrood River, heavy industries like steel, Mobarakeh Steel and other tens great units pollute wild life. This article tries to study contaminant sources of Zayanderood and their severity, and determine and discuss the share of each of these resources by major industrial centers located in areas. At the end, we represent suitable strategy.

The Effect of Pyridoxine and Different Levels of Nitrogen on Physiological Indices of Corn(Zea Mays L.var.sc704)

One field experiment was conducted on corn (Zea mays L.Var. SC 704) to study the effect of three different basic levels of nitrogen (90, 140and 190 Kg/ha as urea) with 0.01% and 0.02% pyridoxine pre-sowing seed soaking for 8 hours. Water-soaked seeds were treated as controled. biomass production was recorded on 45, 70 and 95 days after sowing. Total dry material (TDM), leaf area index (LAI), crop growth rate (CGR), relative growth rate (RGR) and net assimilation rate (NAR) was calculated form 45until 95 days after sowing. Yield and its components such as kernel yield, grain weight, biologic yield, harvest index and protein percentage was measured at harvest. In general, 0.02% pyridoxine and 190 Kg pure nitrogen/ha was shown gave maximum value for growth and yield parameters. N190 + 0.02 % pyridoxine enhanced seed yield and biologic yield by 57.15% and 62.98% compared to 90kg N and water – soaked treatment.

Disinfection of Water by Adsorption with Electrochemical Regeneration

Arvia®, a spin-out company of University of Manchester, UK is commercialising a water treatment technology for the removal of low concentrations of organics from water. This technology is based on the adsorption of organics onto graphite based adsorbents coupled with their electrochemical regeneration in a simple electrochemical cell. In this paper, the potential of the process to adsorb microorganisms and electrochemically disinfect them present in water has been demonstrated. Bench scale experiments have indicated that the process of adsorption using graphite adsorbents with electrochemical regeneration can be used for water disinfection effectively. The most likely mechanisms of disinfection of water through this process include direct electrochemical oxidation and electrochemical chlorination.

What Have Banks Done Wrong?

This paper aims to provide a conceptual framework to examine competitive disadvantage of banks that suffer from poor performance. Banks generate revenues mainly from the interest rate spread on taking deposits and making loans while collecting fees in the process. To maximize firm value, banks seek loan growth and expense control while managing risk associated with loans with respect to non-performing borrowers or narrowing interest spread between assets and liabilities. Competitive disadvantage refers to the failure to access imitable resources and to build managing capabilities to gain sustainable return given appropriate risk management. This paper proposes a four-quadrant framework of organizational typology is subsequently proposed to examine the features of competitive disadvantage in the banking sector. A resource configuration model, which is extracted from CAMEL indicators to examine the underlying features of bank failures.

Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology

According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.

Demulsification of Water-in-Oil Emulsions by Microwave Heating Technology

The mechanism of microwave heating is essentially that of dielectric heating. After exposing the emulsion to the microwave Electromagnetic (EM) field, molecular rotation and ionic conduction due to the penetration of (EM) into the emulsion are responsible for the internal heating. To determine the capability of microwave technology in demulsification of crude oil emulsions, microwave demulsification method was applied in a 50-50 % and 20- 80 % water-in-oil emulsions with microwave exposure time varied from 20-180 sec. Transient temperature profiles of water-in-oil emulsions inside a cylindrical container were measured. The temperature rise at a given location was almost horizontal (linear). The average rates of temperature increase of 50-50 % and 20-80 % water-in-oil emulsions are 0.351 and 0.437 oC/sec, respectively. The rate of temperature increase of emulsions decreased at higher temperature due to decreasing dielectric loss of water. These results indicate that microwave demulsification of water-in-oil emulsions does not require chemical additions. Microwave has the potential to be used as an alternative way in the demulsification process.

GridNtru: High Performance PKCS

Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.

Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India

Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.

The Effect of Precipitation on Weed Infestation of Spring Barley under Different Tillage Conditions

The article deals with the relation between rainfall in selected months and subsequent weed infestation of spring barley. The field experiment was performed at Mendel University agricultural enterprise in Žabčice, Czech Republic. Weed infestation was measured in spring barley vegetation in years 2004 to 2012. Barley was grown in three tillage variants: conventional tillage technology (CT), minimization tillage technology (MT), and no tillage (NT). Precipitation was recorded in one-day intervals. Monthly precipitation was calculated from the measured values in the months of October through to April. The technique of canonical correspondence analysis was applied for further statistical processing. 41 different species of weeds were found in the course of the 9-year monitoring period. The results clearly show that precipitation affects the incidence of most weed species in the selected months, but acts differently in the monitored variants of tillage technologies.