Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design

In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.

Feedback Stabilization Based on Observer and Guaranteed Cost Control for Lipschitz Nonlinear Systems

This paper presents a design of dynamic feedback control based on observer for a class of large scale Lipschitz nonlinear systems. The use of Differential Mean Value Theorem (DMVT) is to introduce a general condition on the nonlinear functions. To ensure asymptotic stability, sufficient conditions are expressed in terms of linear matrix inequalities (LMIs). High performances are shown through real time implementation with ARDUINO Duemilanove board to the one-link flexible joint robot.

Key Competences in Economics and Business Field: The Employers’ Side of the Story

Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.

Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Preliminary Study of Desiccant Cooling System under Algerian Climates

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Numerical Simulations of Fire in Typical Air Conditioned Railway Coach

Railways in India remain primary mode of transport having one of the largest networks in the world and catering to billions of transits yearly. Catastrophic economic damage and loss to life is encountered over the past few decades due to fire to locomotives. Study of fire dynamics and fire propagation plays an important role in evacuation planning and reducing losses. Simulation based study of propagation of fire and soot inside an air conditioned coach of Indian locomotive is done in this paper. Finite difference based solver, Fire Dynamic Simulator (FDS) version 6 has been used for analysis. A single air conditioned 3 tier coupe closed to ambient surroundings by glass windows having occupancy for 8 people is the basic unit of the domain. A system of three such coupes combined is taken to be fundamental unit for the entire study to resemble effect to an entire coach. Analysis of flame and soot contours and concentrations is done corresponding to variations in heat release rate per unit volume (HRRPUA) of fire source, variations in conditioned air velocity being circulated inside coupes by vents and an alternate fire initiation and propagation mechanism via ducts. Quantitative results of fractional area in top and front view of the three coupes under fire and smoke are obtained using MATLAB (IMT). Present simulations and its findings will be useful for organizations like Commission of Railway Safety and others in designing and implementing safety and evacuation measures.

Satisfaction Evaluation on the Fundamental Public Services for a Large-Scale Indemnificatory Residential Community: A Case Study of Nanjing

In order to solve the housing problem for the low-income families, the construction of affordable housing is booming in China. However, due to various reasons, the service facilities and systems in the indemnificatory residential community meet many problems. This article established a Satisfaction Evaluation System of the Fundamental Public Services for Large-scale Indemnificatory Residential Community based on the national standards and local criteria and developed evaluation methods and processes. At last, in the case of Huagang project in Nanjing, the satisfaction of basic public service is calculated according to a survey of local residents.

Fragility Assessment for Torsionally Asymmetric Buildings in Plan

The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.

Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites

In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.

Effects of Corruption and Logistics Performance Inefficiencies on Container Throughput: The Latin America Case

Trade liberalizations measures, as import tariff cuts, are not a sufficient trigger for trade growth. Given that price margins are narrow, traders and cargo operators tend to opt out of markets where the process of goods clearance is slow and costly. Excess paperwork and slow customs dispatch not only lead to institutional breakdowns and corruption but also to increasing transaction cost and trade constraints. The objective of this paper is, therefore, two-fold: First, to evaluate the relationship between institutional and infrastructural performance indexes and trade growth in container throughput; and, second, to investigate the causes for differences in container demurrage and detention fees in Latin American countries (using other emerging countries as benchmarking). The analysis is focused on manufactured goods, typically transported by containers. Institutional and infrastructure bottlenecks and, therefore, the country logistics efficiency – measured by the Logistics Performance Index (LPI, World Bank-WB) – are compared with other indexes, such as the Doing Business index (WB) and the Corruption Perception Index (Transparency International). The main results based on the comparison between Latin American countries and the others emerging countries point out in that the growth in containers trade is directly related to LPI performance. It has also been found that the main hypothesis is valid as aspects that more specifically identify trade facilitation and corruption are significant drivers of logistics performance. The exam of port efficiency (demurrage and detention fees) has demonstrated that not necessarily higher level of efficiency is related to lower charges; however, reductions in fees have been more significant within non-Latin American emerging countries.

Evaluation of Potential Production of Maize Genotypes of Early Maturity in Rainfed Lowland

Maize development at the rainfed lowland after rice is often confronted with the occurrence of drought stress at the time of entering the generative phase, which will cause be hampered crop production. Consequently, in the utilization of the rainfed lowland areas optimally, an effort that can be done using the varieties of early maturity to minimize crop failures due to its short rainy season. The aim of this research was evaluating the potential yield of genotypes of candidates of maize early maturity in the rainfed lowland areas. The study was conducted during May to August 2016 at South Sulawesi, Indonesia. The study used randomized block design to compare 12 treatments and consists of 8 genotypes namely CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8 and the use of four varieties, namely Bima 3, Bima 7, Lamuru and Gumarang. The results showed that genotype of CH2, CH3, CH5, CH 6, CH7 and CH8 harvesting has less than 90 days. There are two genotypes namely genotypes of CH7 and CH8 that have a fairly high production respectively of 7.16 tons / ha and 8.11 tons/ ha and significantly not different from the superior varieties Bima3.

Portable Hands-Free Process Assistant for Gas Turbine Maintenance

This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.

Accreditation and Quality Assurance of Nigerian Universities: The Management Imperative

The general functions of the university amongst other things include teaching, research and community service. Universities are recognized as the apex of learning, accumulating and imparting knowledge and skills of all kinds to students to enable them to be productive, earn their living and to make optimum contributions to national development. This is equivalent to the production of human capital in the form of high level manpower needed to administer the educational society, be useful to the society and manage the economy. Quality has become a matter of major importance for university education in Nigeria. Accreditation is the systematic review of educational programs to ensure that acceptable standards of education, scholarship and infrastructure are being maintained. Accreditation ensures that institution maintain quality. The process is designed to determine whether or not an institution has met or exceeded the published standards for accreditation, and whether it is achieving its mission and stated purposes. Ensuring quality assurance in accreditation process falls in the hands of university management which justified the need for this study. This study examined accreditation and quality assurance: the management imperative. Three research questions and three hypotheses guided the study. The design was a correlation survey with a population of 2,893 university administrators out of which 578 Heads of department and Dean of faculties were sampled. The instrument for data collection was titled Programme Accreditation Exercise scale with high levels of reliability. The research questions were answered with Pearson ‘r’ statistics. T-test statistics was used to test the hypotheses. It was found among others that the quality of accredited programme depends on the level of funding of universities in Nigeria. It was also indicated that quality of programme accreditation and physical facilities of universities in Nigeria have high relationship. But it was also revealed that programme accreditation is positively related to staffing in Nigerian universities. Based on the findings of the study, the researcher recommend that academic administrators should be included in the team of those who ensure quality programs in the universities. Private sector partnership should be encouraged to fund programs to ensure quality of programme in the universities. Independent agencies should be engaged to monitor the activities of accreditation teams to avoid bias.

Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles

The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.

Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Design of a Service-Enabled Dependable Integration Environment

The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support.

Product Feature Modelling for Integrating Product Design and Assembly Process Planning

This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.

Complementary Split Ring Resonator-Loaded Microstrip Patch Antenna Useful for Microwave Communication

Complementary split-ring resonator (CSRR) loaded microstrip square patch antenna has been optimally designed with the help of high frequency structure simulator (HFSS). The antenna has been fabricated on the basis of the simulation design data and experimentally tested in anechoic chamber to evaluate its gain, bandwidth, efficiency and polarization characteristics. The CSRR loaded microstrip patch antenna has been found to realize significant size miniaturization (to the extent of 24%) compared to the conventional-type microstrip patch antenna both operating at the same frequency (5.2 GHz). The fabricated antenna could realize a maximum gain of 4.17 dB, 10 dB impedance bandwidth of 34 MHz, efficiency 50.73% and with maximum cross-pol of 10.56 dB down at the operating frequency. This practically designed antenna with its miniaturized size is expected to be useful for airborne and space borne applications at microwave frequency.