Are PEG Molecules a Universal Protein Repellent?

Poly (ethylene glycol) (PEG) molecules attached to surfaces have shown high potential as a protein repellent due to their flexibility and highly water solubility. A quartz crystal microbalance recording frequency and dissipation changes (QCM-D) has been used to study the adsorption from aqueous solutions, of lysozyme and α-lactalbumin proteins (the last with and without calcium) onto modified stainless steel surfaces. Surfaces were coated with poly(ethylene imine) (PEI) and silicate before grafting on PEG molecules. Protein adsorption was also performed on the bare stainless steel surface as a control. All adsorptions were conducted at 23°C and pH 7.2. The results showed that the presence of PEG molecules significantly reduced the adsorption of lysozyme and α- lactalbumin (with calcium) onto the stainless steel surface. By contrast, and unexpected, PEG molecules enhanced the adsorption of α-lactalbumin (without calcium). It is suggested that the PEG -α- lactalbumin hydrophobic interaction plays a dominant role which leads to protein aggregation at the surface for this latter observation. The findings also lead to the general conclusion that PEG molecules are not a universal protein repellent. PEG-on-PEI surfaces were better at inhibiting the adsorption of lysozyme and α-lactalbumin (with calcium) than with PEG-on-silicate surfaces.

Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Fermentative Production of Dextran using Food Industry Wastes

Dextran is a D-glucose polymer which is produced by Leuconostoc mesenteroides grown in a sucrose-rich media. The organism was obtained from the Persian Type Culture Collection (PTCC) and was transferred in MRS broth medium at 30°C and pH 6.8 for 24 h. After preparation of inoculums, organisms were inoculated into five liquid fermentation media containing either molasses or cheese whey or different combinations of cheese whey and molasses. After certain fermentation period, the produced dextran was separated and dried. Dextran yield was calculated and significant differences in different media were observed. Furthermore, FT-IR analysis was performed and the results showed that there were no significant differences in the produced dextran structures.

Experimental Determination of the Critical Locus of the Acetone + Chloroform Binary System

In this paper, vapour-liquid critical locus for the binary system acetone + chloroform was determined experimentally over the whole range of composition. The critical property measurements were carried out using a dynamic-synthetic apparatus, employed in the dynamic mode. The critical points are visually determined by observing the critical opalescence and the simultaneous disappearance and reappearance of the meniscus in the middle of a high-pressure view cell which withstands operations up to 673K and 20MPa. The experimental critical points measured in this work were compared to those available in literature.

Modeling and Design of an Active Leg Orthosis for Tumble Protection

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs

Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained.

Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

Quantitative Precipitation Forecast using MM5 and WRF models for Kelantan River Basin

Quantitative precipitation forecast (QPF) from atmospheric model as input to hydrological model in an integrated hydro-meteorological flood forecasting system has been operational in many countries worldwide. High-resolution numerical weather prediction (NWP) models with grid cell sizes between 2 and 14 km have great potential in contributing towards reasonably accurate QPF. In this study the potential of two NWP models to forecast precipitation for a flood-prone area in a tropical region is examined. The precipitation forecasts produced from the Fifth Generation Penn State/NCAR Mesoscale (MM5) and Weather Research and Forecasting (WRF) models are statistically verified with the observed rain in Kelantan River Basin, Malaysia. The statistical verification indicates that the models have performed quite satisfactorily for low and moderate rainfall but not very satisfactory for heavy rainfall.

Determination of Some Organochlorine Pesticide Residues in Vegetable and Soil Samples from Alau Dam and Gongulong Agricultural Sites, Borno State, North Eastern Nigeria

Five vegetables (spinach, lettuce, cabbage, tomato, and onion) were freshly harvested from the Alau Dam and Gongulong agricultural areas for the determination of some organochlorine pesticide residues (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, α-BHC, γ-BHC, metoxichlor, lindane, endosulfan dieldrin, and aldrin.) Soil samples were also collected at different depths for the determination of the above pesticides. Samples collection and preparation were conducted using standard procedures. The concentrations of all the pesticides in the soil and vegetable samples were determined using GC/MS SHIMADZU (GC-17A) equipped with electron capture detector (ECD). The highest concentration was that of p,p’-DDD (132.4±13.45µg/g) which was observed in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (2.34µg/g) was observed in the root of spinach. Similar trends were observed at the Gongulong agricultural area, with p,p’-DDD having the highest concentration of 153.23µg/g in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (12.45µg/g) which was observed in the root of spinach. α-BHC, γ-BHC, Methoxychlor, and lindane were detected in all the vegetable samples studied. The concentrations of all the pesticides in the soil samples were observed to be higher at a depth of 21-30cm, while the lowest concentrations were observed at a depth of 0-10cm. The concentrations of all the pesticides in the vegetables and soil samples from the two agricultural sites were observed to be at alarming levels, much higher than the maximum residue limits (MRLs) and acceptable daily intake values (ADIs) .The levels of the pesticides observed in the vegetables and soil samples investigated, are of such a magnitude that calls for special attention and laws to regulate the use and circulation of such chemicals. Routine monitoring of pesticide residues in these study areas is necessary for the prevention, control and reduction of environmental pollution, so as to minimize health risks.

The Micro Ecosystem Restoration Mechanism Applied for Feasible Research of Lakes Eutrophication Enhancement

The technique of inducing micro ecosystem restoration is one of aquatic ecology engineering methods used to retrieve the polluted water. Batch scale study, pilot plant study, and field study were carried out to observe the eutrophication using the Inducing Ecology Restorative Symbiosis Agent (IERSA) consisting mainly degraded products by using lactobacillus, saccharomycete, and phycomycete. The results obtained from the experiments of the batch scale and pilot plant study allowed us to development the parameters for the field study. A pond, 5 m to the outlet of a lake, with an area of 500 m2 and depth of 0.6-1.2 m containing about 500 tons of water was selected as a model. After the treatment with 10 mg IERSA/L water twice a week for 70 days, the micro restoration mechanisms consisted of three stages (i.e., restoration, impact maintenance, and ecology recovery experiment after impact). The COD, TN, TKN, and chlorophyll a were reduced significantly in the first week. Although the unexpected heavy rain and contaminate from sewage system might slow the ecology restoration. However, the self-cleaning function continued and the chlorophyll a reduced for 50% in one month. In the 4th week, amoeba, paramecium, rotifer, and red wriggle worm reappeared, and the number of fish flies appeared up to1000 fish fries/m3. Those results proved that inducing restorative mechanism can be applied to improve the eutrophication and to control the growth of algae in the lakes by gaining the selfcleaning through inducing and competition of microbes. The situation for growth of fishes also can reach an excellent result due to the improvement of water quality.

Challenges for Security in Wireless Sensor Networks (WSNs)

Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.

Effect of Recombinant Human Follicle Stimulating Hormone on Meiotic Competence of In Vitro Grown Nili Ravi Buffalo Oocytes

In the present study, the response of Nili Ravi buffalo oocytes to recombinant human follicle stimulating hormone (rhFSH) (Organon) on meiotic maturation in vitro was examined. Oocytes were matured in vitro in medium containing either 0 or 0.05 IU/ ml rhFSH and the stage of nuclear maturation recorded after 24 hours. The percentage of oocytes in the control group undergoing germinal vesicle breakdown (GVBD) observed after 24 hours of culture was 29 % whereas as in rhFSH group the percentage was 10 % were at this stage (P< 0.001).Thus in the presence of rhFSH, a significantly greater number of oocytes had progressed to the more advanced stages of nuclear maturation. Indeed, the maturation of GV (Germinal Vesicle) stage oocytes to the metaphase II (M II) stage after 24 hours was significantly (P< 0.0001) increased by the addition of rhFSH (82 % VS 47 %). The percentage of degenerated oocytes after 24 hours of culture was 24 % in control group, whereas in rhFSH group the percentage was 8 % after 24 hours. Degeneration of the oocytes after 24 hours was not significantly (P = 0. 9361) decreased.

Moment Generating Functions of Observed Gaps between Hypopnea Using Saddlepoint Approximations

Saddlepoint approximations is one of the tools to obtain an expressions for densities and distribution functions. We approximate the densities of the observed gaps between the hypopnea events using the Huzurbazar saddlepoint approximation. We demonstrate the density of a maximum likelihood estimator in exponential families.

Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light

The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out.

Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder

The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.

Motor Imagery Signal Classification for a Four State Brain Machine Interface

Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification

Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder

The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.

Streamflow Modeling for a Small Watershed Using Limited Hydrological Data

This research was conducted in the Pua Watershed whereas located in the Upper Nan River Basin in Nan province, Thailand. Nan River basin originated in Nan province that comprises of many tributary streams to produce as inflow to the Sirikit dam provided huge reservoir with the storage capacity of 9510 million cubic meters. The common problems of most watersheds were found i.e. shortage water supply for consumption and agriculture utilizations, deteriorate of water quality, flood and landslide including debris flow, and unstable of riverbank. The Pua Watershed is one of several small river basins that flow through the Nan River Basin. The watershed includes 404 km2 representing the Pua District, the Upper Nan Basin, or the whole Nan River Basin, of 61.5%, 18.2% or 1.2% respectively. The Pua River is a main stream producing all year streamflow supplying the Pua District and an inflow to the Upper Nan Basin. Its length approximately 56.3 kilometers with an average slope of the channel by 1.9% measured. A diversion weir namely Pua weir bound the plain and mountainous areas with a very steep slope of the riverbed to 2.9% and drainage area of 149 km2 as upstream watershed while a mild slope of the riverbed to 0.2% found in a river reach of 20.3 km downstream of this weir, which considered as a gauged basin. However, the major branch streams of the Pua River are ungauged catchments namely: Nam Kwang and Nam Koon with the drainage area of 86 and 35 km2 respectively. These upstream watersheds produce runoff through the 3-streams downstream of Pua weir, Jao weir, and Kang weir, with an averaged annual runoff of 578 million cubic meters. They were analyzed using both statistical data at Pua weir and simulated data resulted from the hydrologic modeling system (HEC–HMS) which applied for the remaining ungauged basins. Since the Kwang and Koon catchments were limited with lack of hydrological data included streamflow and rainfall. Therefore, the mathematical modeling: HEC-HMS with the Snyder-s hydrograph synthesized and transposed methods were applied for those areas using calibrated hydrological parameters from the upstream of Pua weir with continuously daily recorded of streamflow and rainfall data during 2008-2011. The results showed that the simulated daily streamflow and sum up as annual runoff in 2008, 2010, and 2011 were fitted with observed annual runoff at Pua weir using the simple linear regression with the satisfied correlation R2 of 0.64, 062, and 0.59, respectively. The sensitivity of simulation results were come from difficulty using calibrated parameters i.e. lag-time, coefficient of peak flow, initial losses, uniform loss rates, and missing some daily observed data. These calibrated parameters were used to apply for the other 2-ungauged catchments and downstream catchments simulated.

Topical Delivery of Thymidine Dinucleotide to Induce p53 Generation in the Skin by Elastic Liposome

Transcription factor p53 has a powerful tumor suppressing function that is associated with many cancers. However, p53 of the molecular weight was higher make the limitation across to skin or cell membrane. Thymidine dinucleotide (pTT), an oligonucleotide, can activate the p53 transcription factor. pTT is a hydrophilic and negative charge oligonucleotide, which delivery in to cell membrane need an appropriate carrier. The aim of this study was to improve the bioavailability of the nucleotide fragment, thymidine dinucleotide (pTT), using elasic liposome carriers to deliver the drug into the skin. The study demonstrate that dioleoylphosphocholine (DOPC) incorporated with sodium cholate at molar ratio 1:1 can archived the particle size about 220 nm. This elastic liposome could penetration through skin from stratum corneum to whole epidermis by confocal laser scanning microscopy (CLSM). Moreover, we observed the the slight increase in generation of p53 by western blot.

Speed -Sensorless Vector Control of Parallel Connected Induction Motor Drive Fed by a Single Inverter using Natural Observer

This paper describes the speed sensorless vector control method of the parallel connected induction motor drive fed by a single inverter. Speed and rotor fluxes of the induction motor are estimated by natural observer with load torque adaptation and adaptive rotor flux observer. The performance parameters speed and rotor fluxes are estimated from the measured terminal voltages and currents. Fourth order induction motor model is used and speed is considered as a parameter. The performance of the natural observer is similar to the conventional observer. The speed of an induction motor is estimated by MATLAB simulation under different speed and load conditions. Estimated values along with other measured states are used for closed loop control. The simulation results show that the natural observer is also effective for parallel connected induction motor drive.