Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment

This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

Investigation of Undular Hydraulic Jump over Smooth Beds

Undular hydraulic jumps are illustrated by a smooth rise of the free surface followed by a train of stationary waves. They are sometimes experienced in natural waterways and rivers. The characteristics of undular hydraulic jumps are studied here. The height, amplitude and the main characteristics of undular jump is depended on the upstream Froude number and aspect ratio. The experiments were done on the smooth bed flume. These results compared with other researches and the main characteristics of the undular hydraulic jump were studied in this article.

Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens

Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.

Effects of Length of Time of Fasting upon Subjective and Objective Variables When Controlling Sleep, Food and Fluid Intakes

Ramadan requires individuals to abstain from food and fluid intake between sunrise and sunset; physiological considerations predict that poorer mood, physical performance and mental performance will result. In addition, any difficulties will be worsened because preparations for fasting and recovery from it often mean that nocturnal sleep is decreased in length, and this independently affects mood and performance. A difficulty of interpretation in many studies is that the observed changes could be due to fasting but also to the decreased length of sleep and altered food and fluid intakes before and after the daytime fasting. These factors were separated in this study, which took place over three separate days and compared the effects of different durations of fasting (4, 8 or 16h) upon a wide variety of measures (including subjective and objective assessments of performance, body composition, dehydration and responses to a short bout of exercise) - but with an unchanged amount of nocturnal sleep, controlled supper the previous evening, controlled intakes at breakfast and daytime naps not being allowed. Many of the negative effects of fasting observed in previous studies were present in this experiment also. These findings indicate that fasting was responsible for many of the changes previously observed, though some effect of sleep loss, particularly if occurring on successive days (as would occur in Ramadan) cannot be excluded.

Studying Effects of Alternative Biodiesel Fuel in Performance and Pollutants of Diesel Engines

Since injection engines have a considerable portion, in consumption of energy and environmental pollution, using an alternative source of energy with lower pollutant effects in this regard is necessary. Biodiesel fuel is a suitable alternative for gasoline in diesel engines. In this research the property of biodiesel, the function and the pollution effects of diesel engine, when using 100% biodiesel, using 100% gasoline and mixing ratio of both fuels for comparing them, have been investigated. The researches have shown, using biodiesel fuel in prevalent diesel engine, will reduce the pollutants such as Co, half burned carbohydrate and suspended particles and a little increase in oxidation will achieve while power consumption, particularly fuel and thermal efficiency of diesel fuel has the same.

An Investigation of Adjustment of Solar Shading Devices in Office Buildings

The purpose of this paper is to investigate the adjust- ment of solar shading devices in office buildings in two different seasons by occupants, and its influence on the lighting control and indoor illuminance levels. The results show that occupants take inappropriate measures both in reducing solar radiation in summer and in admitting solar gains in winter, resulting in an increase in lighting energy and a reduction in indoor illuminance. Therefore, movable shading devices, controlled automatically, are suitable for building applications to reduce energy consumption.

Tracking Objects in Color Image Sequences: Application to Football Images

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Ontology-based Concept Weighting for Text Documents

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Exterior Calculus: Economic Profit Dynamics

A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). By contracting the characteristic differential one-form with a vortex vector, the Lagrangian is obtained for the Dynamics of Economic Profit.

Partial 3D Reconstruction using Evolutionary Algorithms

When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.

Alternative Approach toward Waste Treatment: Biodrying for Solid Waste in Malaysia

This paper reviews the objectives, methods and results of previous studies on biodrying of solid waste in several countries. Biodrying of solid waste is a novel technology in developing countries such as in Malaysia where high moisture content in organic waste makes the segregation process for recycling purposes complicated and diminishes the calorific value for the use of fuel source. In addition, the high moisture content also encourages the breeding of vectors and disease-bearing animals. From the laboratory results, the average moisture content of organic waste, paper, plastics and metals are 58.17%, 37.93%, 29.79% and 1.03% respectively for UKM campus. Biodrying of solid waste is a simple method of waste treatment as well as a cost-efficient technology to dry the solid waste. The process depends on temperature monitoring and air flow control along with the natural biodegradable process of organic waste. This review shows that the biodrying of solid waste method has high potential in treatment and recycling of solid waste, be useful for biodrying study and implementation in Malaysia.

Development of a Water-Jet Assisted Underwater Laser Cutting Process

We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.

Color and Layout-based Identification of Documents Captured from Handheld Devices

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.

Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

On the Analysis and a Few Optimization Issues of a New iCIM 3000 System at an Academic-Research Oriented Institution

In the past years, the world has witnessed significant work in the field of Manufacturing. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Closely following all this, due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: moving toward a more intelligent manufacturing, the present paper emerges with the main aim of contributing to the analysis and a few customization issues of a new iCIM 3000 system at the IPSAM. In this process, special emphasis in made on the material flow problem. For this, besides offering a description and analysis of the system and its main parts, also some tips on how to define other possible alternative material flow scenarios and a partial analysis of the combinatorial nature of the problem are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a few figures and expressions which would help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Managing, Sustaining, and Future Proofing the Business of Educational Provision Following Large-Scale Disaster and Disruption

A catastrophic earthquake measuring 6.3 on the Richter scale struck the Christchurch, New Zealand Central Business District on February 22, 2012, abruptly disrupting the business of teaching and learning at Christchurch Polytechnic Institute of Technology. This paper presents the findings from a study undertaken about the complexity of delivering an educational programme in the face of this traumatic natural event. Nine interconnected themes emerged from this multiple method study: communication, decision making, leader- and follower-ship, balancing personal and professional responsibilities, taking action, preparedness and thinking ahead, all within a disruptive and uncertain context. Sustainable responses that maximise business continuity, and provide solutions to practical challenges, are among the study-s recommendations.

Short Time Identification of Feed Drive Systems using Nonlinear Least Squares Method

Design and modeling of nonlinear systems require the knowledge of all inside acting parameters and effects. An empirical alternative is to identify the system-s transfer function from input and output data as a black box model. This paper presents a procedure using least squares algorithm for the identification of a feed drive system coefficients in time domain using a reduced model based on windowed input and output data. The command and response of the axis are first measured in the first 4 ms, and then least squares are applied to predict the transfer function coefficients for this displacement segment. From the identified coefficients, the next command response segments are estimated. The obtained results reveal a considerable potential of least squares method to identify the system-s time-based coefficients and predict accurately the command response as compared to measurements.

A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation

Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Creativity and Economic Development

The objective of this paper is to construct a creativity composite index designed to capture the growing role of creativity in driving economic and social development for the 27 European Union countries. The paper proposes a new approach for the measurement of EU-27 creative potential and for determining its capacity to attract and develop creative human capital. We apply a modified version of the 3T model developed by Richard Florida and Irene Tinagli for constructing a Euro-Creativity Index. The resulting indexes establish a quantitative base for policy makers, supporting their efforts to determine the contribution of creativity to economic development.

Induction of Alternative Oxidase Activity in Candida albicans by Oxidising Conditions

Candida albicans ATCC 10231 had low endogenous activity of the alternative oxidase compared with that of C. albicans ATCC 10261. In C. albicans ATCC 10231 the endogenous activity declined as the cultures aged. Alternative oxidase activity could be induced in C. albicans ATCC 10231 by treatment with cyanide, but the induction of this activity required the presence of oxygen which could be replaced, at least in part, with high concentrations of potassium ferricyanide. We infer from this that the expression of the gene encoding the alternative oxidase is under the control of a redoxsensitive transcription factor.