3D Oil Reservoir Visualisation Using Octree Compression Techniques Utilising Logical Grid Co-Ordinates

Octree compression techniques have been used for several years for compressing large three dimensional data sets into homogeneous regions. This compression technique is ideally suited to datasets which have similar values in clusters. Oil engineers represent reservoirs as a three dimensional grid where hydrocarbons occur naturally in clusters. This research looks at the efficiency of storing these grids using octree compression techniques where grid cells are broken into active and inactive regions. Initial experiments yielded high compression ratios as only active leaf nodes and their ancestor, header nodes are stored as a bitstream to file on disk. Savings in computational time and memory were possible at decompression, as only active leaf nodes are sent to the graphics card eliminating the need of reconstructing the original matrix. This results in a more compact vertex table, which can be loaded into the graphics card quicker and generating shorter refresh delay times.

Measuring of Urban Sustainability in Town Planners Practice

Physical urban form is recognized to be the media for human transactions. It directly influences the travel demand of people in a specific urban area and the amount of energy used for transportation. Distorted, sprawling form often creates sustainability problems in urban areas. It is declared in EU strategic planning documents that compact urban form and mixed land use pattern must be given the main focus to achieve better sustainability in urban areas, but the methods to measure and compare these characteristics are still not clear. This paper presents the simple methods to measure the spatial characteristics of urban form by analyzing the location and distribution of objects in an urban environment. The extended CA (cellular automata) model is used to simulate urban development scenarios.

Analytical Analysis of Image Representation by Their Discrete Wavelet Transform

In this paper, we present an analytical analysis of the representation of images as the magnitudes of their transform with the discrete wavelets. Such a representation plays as a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We found that if the signals are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all signals. We also present an iterative reconstruction algorithm which yields very good reconstruction up to the sign minor numerical errors in the very low frequencies.

Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Obstacles as Switches between Different Cardiac Arrhythmias

Ventricular fibrillation is a very important health problem as is the cause of most of the sudden deaths in the world. Waves of electrical activity are sent by the SA node, propagate through the cardiac tissue and activate the mechanisms of cell contraction, and therefore are responsible to pump blood to the body harmonically. A spiral wave is an abnormal auto sustainable wave that is responsible of certain types of arrhythmias. When these waves break up, give rise to the fibrillation regime, in which there is a complete loss in the coordination of the contraction of the heart muscle. Interaction of spiral waves and obstacles is also of great importance as it is believed that the attachment of a spiral wave to an obstacle can provide with a transition of two different arrhythmias. An obstacle can be partially excitable or non excitable. In this talk, we present a numerical study of the interaction of meandering spiral waves with partially and non excitable obstacles and focus on the problem where the obstacle plays a fundamental role in the switch between different spiral regimes, which represent different arrhythmic regimes. Particularly, we study the phenomenon of destabilization of spiral waves due to the presence of obstacles, a phenomenon not completely understood (This work will appear as a Chapter in a Book named Cardiac Arrhytmias by INTECH under the name "Spiral Waves, Obstacles and Cardiac Arrhythmias", ISBN 979-953-307-050-5.).

Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

Some Relationships between Classes of Reverse Watson-Crick Finite Automata

A Watson-Crick automaton is recently introduced as a computational model of DNA computing framework. It works on tapes consisting of double stranded sequences of symbols. Symbols placed on the corresponding cells of the double-stranded sequences are related by a complimentary relation. In this paper, we investigate a variation of Watson-Crick automata in which both heads read the tape in reverse directions. They are called reverse Watson-Crick finite automata (RWKFA). We show that all of following four classes, i.e., simple, 1-limited, all-final, all-final and simple, are equal to non-restricted version of RWKFA.

Photovoltaic Array Sizing for PV-Electrolyzer

Hydrogen that used as fuel in fuel cell vehicles can be produced from renewable sources such as wind, solar, and hydro technologies. PV-electrolyzer is one of the promising methods to produce hydrogen with zero pollution emission. Hydrogen production from a PV-electrolyzer system depends on the efficiency of the electrolyzer and photovoltaic array, and sun irradiance at that site. In this study, the amount of hydrogen is obtained using mathematical equations for difference driving distance and sun peak hours. The results show that the minimum of 99 PV modules are used to generate 1.75 kgH2 per day for two vehicles.

A Fixed Band Hysteresis Current Controller for Voltage Source AC Chopper

Most high-performance ac drives utilize a current controller. The controller switches a voltage source inverter (VSI) such that the motor current follows a set of reference current waveforms. Fixed-band hysteresis (FBH) current control has been widely used for the PWM inverter. We want to apply the same controller for the PWM AC chopper. The aims of the controller is to optimize the harmonic content at both input and output sides, while maintaining acceptable losses in the ac chopper and to control in wide range the fundamental output voltage. Fixed band controller has been simulated and analyzed for a single-phase AC chopper and are easily extended to three-phase systems. Simulation confirmed the advantages and the excellent performance of the modulation method applied for the AC chopper.

An Agent-Based Approach to Immune Modelling: Priming Individual Response

This study focuses on examining why the range of experience with respect to HIV infection is so diverse, especially in regard to the latency period. An agent-based approach in modelling the infection is used to extract high-level behaviour which cannot be obtained analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties, contributing to the individual disease experience, and is included in a network which mimics the chain of lymph nodes. The model also accounts for stochastic events such as viral mutations. The size and complexity of the model require major computational effort and parallelisation methods are used.

Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

Multi-Objective Cellular Manufacturing System under Machines with Different Life-Cycle using Genetic Algorithm

In this paper a multi-objective nonlinear programming model of cellular manufacturing system is presented which minimize the intercell movements and maximize the sum of reliability of cells. We present a genetic approach for finding efficient solutions to the problem of cell formation for products having multiple routings. These methods find the non-dominated solutions and according to decision makers prefer, the best solution will be chosen.

Autonomous Control of Multiple Mobile Manipulators

This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.

Analysis of Metallothionein Gene MT1A (rs11076161) and MT2A (rs10636) Polymorphisms as a Molecular Marker in Type 2 Diabetes Mellitus among Malay Population

Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder that characterized by the presence of high glucose in blood that cause from insulin resistance and insufficiency due to deterioration β-cell Langerhans functions. T2DM is commonly caused by the combination of inherited genetic variations as well as our own lifestyle. Metallothionein (MT) is a known cysteine-rich protein responsible in helping zinc homeostasis which is important in insulin signaling and secretion as well as protection our body from reactive oxygen species (ROS). MT scavenged ROS and free radicals in our body happen to be one of the reasons of T2DM and its complications. The objective of this study was to investigate the association of MT1A and MT2A polymorphisms between T2DM and control subjects among Malay populations. This study involved 150 T2DM and 120 Healthy individuals of Malay ethnic with mixed genders. The genomic DNA was extracted from buccal cells and amplified for MT1A and MT2A loci; the 347bp and 238bp banding patterns were respectively produced by mean of the Polymerase Chain Reaction (PCR). The PCR products were digested with Mlucl and Tsp451 restriction enzymes respectively and producing fragments lengths of (158/189/347bp) and (103/135/238bp) respectively. The ANOVA test was conducted and it shown that there was a significant difference between diabetic and control subjects for age, BMI, WHR, SBP, FPG, HBA1C, LDL, TG, TC and family history with (P0.05). The genotype frequency for AA, AG and GG of MT1A polymorphisms was 72.7%, 22.7% and 4.7% in cases and 15%, 55% and 30% in control respectively. As for MT2A, genotype frequency of GG, GC and CC was 42.7%, 27.3% and 30% in case and 5%, 40% and 55% for control respectively. Both polymorphisms show significant difference between two investigated groups with (P=0.000). The Post hoc test was conducted and shows a significant difference between the genotypes within each polymorphism (P=0. 000). The MT1A and MT2A polymorphisms were believed to be the reliable molecular markers to distinguish the T2DM subjects from healthy individuals in Malay populations.

System of Programs for Rapid Development and Execution of Palm OS Applications

We present the development of a system of programs designed for the compilation and execution of applications for handheld computers. In introduction we describe the purpose of the project and its components. The next two paragraphs present the first two components of the project (the scanner and parser generators). Then we describe the Object Pascal compiler and the virtual machines for Windows and Palm OS. In conclusion we emphasize the ways in which the project can be extended.

Coding based Synchronization Algorithm for Secondary Synchronization Channel in WCDMA

A new code synchronization algorithm is proposed in this paper for the secondary cell-search stage in wideband CDMA systems. Rather than using the Cyclically Permutable (CP) code in the Secondary Synchronization Channel (S-SCH) to simultaneously determine the frame boundary and scrambling code group, the new synchronization algorithm implements the same function with less system complexity and less Mean Acquisition Time (MAT). The Secondary Synchronization Code (SSC) is redesigned by splitting into two sub-sequences. We treat the information of scrambling code group as data bits and use simple time diversity BCH coding for further reliability. It avoids involved and time-costly Reed-Solomon (RS) code computations and comparisons. Analysis and simulation results show that the Synchronization Error Rate (SER) yielded by the new algorithm in Rayleigh fading channels is close to that of the conventional algorithm in the standard. This new synchronization algorithm reduces system complexities, shortens the average cell-search time and can be implemented in the slot-based cell-search pipeline. By taking antenna diversity and pipelining correlation processes, the new algorithm also shows its flexible application in multiple antenna systems.

The Study of the Variability of Anticipatory Postural Adjustments in Recurrent Non-specific LBP Patients

The study of the variability of the postural strategies in low back pain patients, as a criterion in evaluation of the adaptability of this system to the environmental demands is the purpose of this study. A cross-sectional case-control study was performed on 21 recurrent non-specific low back pain patients and 21 healthy volunteers. The electromyography activity of Deltoid, External Oblique (EO), Transverse Abdominis/Internal Oblique (TrA/IO) and Erector Spine (ES) muscles of each person was recorded in 75 rapid arm flexion with maximum acceleration. Standard deviation of trunk muscles onset relative to deltoid muscle onset were statistically analyzed by MANOVA . The results show that chronic low back pain patients exhibit less variability in their anticipatory postural adjustments (APAs) in comparison with the control group. There is a decrease in variability of postural control system of recurrent non-specific low back pain patients that can result in the persistence of pain and chronicity by decreasing the adaptability to environmental demands.

Designing an Online Case-Based Library for Technology Integration in Teacher Education

The purpose of this paper is to introduce an interactive online case-study library website developed in a national project. The design goal of the website is to provide interactive, enhanced, case-based and online educational resource for educators through the purpose and within the scope of a national project. The ADDIE instructional design model was used in the development of the website for interactive case-based library. This library is developed on a web-based platform, which is important in terms of manageability, accessibility, and updateability of data. Users are able to sort the displayed case-studies by their titles, dates, ratings, view counts, etc. The usability test is used and the expert opinion is taken for the evaluation of the website. This website is a tool to integrate technology into education. It is believed that this website will be beneficial for pre-service and in-service teachers in terms of their professional developments.

The Importance of 3D Mesh Generation for Large Eddy Simulation of Gas – Solid Turbulent Flows in a Fluidized Beds

The objective of this work is to show a procedure for mesh generation in a fluidized bed using large eddy simulations (LES) of a filtered two-fluid model. The experimental data were obtained by [1] in a laboratory fluidized bed. Results show that it is possible to use mesh with less cells as compared to RANS turbulence model with granular kinetic theory flow (KTGF). Also, the numerical results validate the experimental data near wall of the bed, which cannot be predicted by RANS.model.

Performance Enhancement of Dye-Sensitized Solar Cells by MgO Coating on TiO2 Electrodes

TiO2/MgO composite films were prepared by coating the magnesium acetate solution in the pores of mesoporous TiO2 films using a dip coating method. Concentrations of magnesium acetate solution were varied in a range of 1x10-4 – 1x10-1 M. The TiO2/MgO composite films were characterized by scanning electron microscopy (SEM), transmission electron microscropy (TEM), electrochemical impedance spectroscopy(EIS) , transient voltage decay and I-V test. The TiO2 films and TiO2/MgO composite films were immersed in a 0.3 mM N719 dye solution. The Dye-sensitized solar cells with the TiO2/MgO/N719 structure showed an optimal concentration of magnesium acetate solution of 1x10-3 M resulting in the MgO film estimated thickness of 0.0963 nm and giving the maximum efficiency of 4.85%. The improved efficiency of dyesensitized solar cell was due to the magnesium oxide film as the wide band gap coating decays the electron back transfer to the triiodide electrolyte and reduce charge recombination.