An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Improvement of Monacolin K and Minimizing of Citrinin Content in Korkor 6 (RD 6) Red Yeast Rice

A strain of Monascus purpureus CMU001 was used to prepare red yeast rice from Thai glutinous rice Korkor 6 (RD 6). Adding of different amounts of histidine (156, 312, 625 and 1250 mg in 100 g of rice grains)) under aerobic and air limitation (air-lock) condition were used in solid fermentation. Determination of the yield as well as monacolin K content was done. Citrinin content was also determined in order to confirm the safety use of prepared red yeast rice. It was found that under air-lock condition with 1250 mg of histidine addition gave the highest yield of 37.40 g of dried red yeast rice prepared from 100 g of rice. Highest 5.72 mg content of monacolin K was obtained under air-lock condition with 312 mg histidine addition. In the other hand, citrinin content was found to be less than 24462 ng/g of all dried red yeast rice samples under the experimental methods used in this work.

Analytical Development of a Failure Limit and Iso-Uplift Curves for Eccentrically Loaded Shallow Foundations

Examining existing experimental results for shallow rigid foundations subjected to vertical centric load (N), accompanied or not with a bending moment (M), two main non-linear mechanisms governing the cyclic response of the soil-foundation system can be distinguished: foundation uplift and soil yielding. A soil-foundation failure limit, is defined as a domain of resistance in the two dimensional (2D) load space (N, M) inside of which lie all the admissible combinations of loads; these latter correspond to a pure elastic, non-linear elastic or plastic behavior of the soil-foundation system, while the points lying on the failure limit correspond to a combination of loads leading to a failure of the soil-foundation system. In this study, the proposed resistance domain is constructed analytically based on mechanics. Original elastic limit, uplift initiation limit and iso-uplift limits are constructed inside this domain. These limits give a prediction of the mechanisms activated for each combination of loads applied to the foundation. A comparison of the proposed failure limit with experimental tests existing in the literature shows interesting results. Also, the developed uplift initiation limit and iso-uplift curves are confronted with others already proposed in the literature and widely used due to the absence of other alternatives, and remarkable differences are noted, showing evident errors in the past proposals and relevant accuracy for those given in the present work.

Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

In the scope of application of technical textiles, Non- Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitchfree method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxy-fluorination was used. The modification of carbonfibres by oxy-fluorination was investigated via scanning electron microscope, X-ray photoelectron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Cost of Governance in Nigeria: In Whose Interest?

Cost of governance in Nigeria has become a challenge to development and concern to practitioners and scholars alike in the field of business and social science research. In the 2010 national budget of NGN4.6 trillion or USD28.75billion for instance, only a pantry sum of NGN1.8trillion or USD11.15billion was earmarked for capital expenditure. Similarly, in 2013, out of a total national budget of NGN4.92trillion or USD30.75billion, only the sum of NGN1.50trllion or USD9.38billion was voted for capital expenditure. Therefore, based on the data sourced from the Nigerian Office of Statistics, Central bank of Nigeria Statistical Bulletin as well as from the United Nations Development Programme, this study examined the causes of high cost of governance in Nigeria. It found out that the high cost of governance in the country is in the interest of the ruling class, arising from their unethical behaviour – corrupt practices and the poor management of public resources. As a result, the study recommends the need to intensify the war against corruption and mismanagement of public resources by government officials as possible solution to overcome the high cost of governance in Nigeria. This could be achieved by strengthening the constitutional powers of the various anti-corruption agencies in the area of arrest, investigation and prosecution of offenders without the interference of the executive arm of government either at the local, state or federal level.

IT Systems of the US Federal Courts, Justice, and Governance

Validity, integrity, and impacts of the IT systems of the US federal courts have been studied as part of the Human Rights Alert-NGO (HRA) submission for the 2015 Universal Periodic Review (UPR) of human rights in the United States by the Human Rights Council (HRC) of the United Nations (UN). The current report includes overview of IT system analysis, data-mining and case studies. System analysis and data-mining show: Development and implementation with no lawful authority, servers of unverified identity, invalidity in implementation of electronic signatures, authentication instruments and procedures, authorities and permissions; discrimination in access against the public and unrepresented (pro se) parties and in favor of attorneys; widespread publication of invalid judicial records and dockets, leading to their false representation and false enforcement. A series of case studies documents the impacts on individuals' human rights, on banking regulation, and on international matters. Significance is discussed in the context of various media and expert reports, which opine unprecedented corruption of the US justice system today, and which question, whether the US Constitution was in fact suspended. Similar findings were previously reported in IT systems of the State of California and the State of Israel, which were incorporated, subject to professional HRC staff review, into the UN UPR reports (2010 and 2013). Solutions are proposed, based on the principles of publicity of the law and the separation of power: Reliance on US IT and legal experts under accountability to the legislative branch, enhancing transparency, ongoing vigilance by human rights and internet activists. IT experts should assume more prominent civic duties in the safeguard of civil society in our era.

Designing Back-stepping Sliding Mode Controller for a Class of 4Y Octorotor

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octortor UAV and its feature will be shown.

CMT4G – Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient

The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.

Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+(Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11- SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Computer Assisted Learning in a Less Resource Region

Passing the entrance exam to a university is a major step in one's life. University entrance exam commonly known as Kankor is the nationwide entrance exam in Afghanistan. This examination is prerequisite for all public and private higher education institutions at undergraduate level. It is usually taken by students who are graduated from high schools. In this paper, we reflect the major educational school graduates issues and propose ICT-based test preparation environment, known as ‘Online Kankor Exam Prep System’ to give students the tools to help them pass the university entrance exam on the first try. The system is based on Intelligent Tutoring System (ITS), which introduced an essential package of educational technology for learners that features: (I) exam-focused questions and content; (ii) self-assessment environment; and (iii) test preparation strategies in order to help students to acquire the necessary skills in their carrier and keep them up-to-date with instruction.

Wind Energy Status in Turkey

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.

Interactive of Calcium, Potassium and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System

Due to water shortage, application of saline water for irrigation is an urgent in agriculture. In this study the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided in to two equal parts containing full Johnson nutrient solution and 40 mMNaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although addition of potassium to culture media wasn’t effective. The greatest concentration of sodium was observed at the shoot of treatments which had smallest growth. According to the results of this study, in case of dynamic and non-uniform distribution of salts in the root media, by addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.

The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Port Governance in Santos, Brazil: A Qualitative Approach

Given the importance of ports as links in the global supply chains and because they are key elements to induce competitiveness in their hinterlands, the number of studies devoted to port governance, management and operations has increased in the last decades. Some of these studies address the port governance model as an element to improve coordination among the actors of the portlogistics chain and to generate a better port performance. In this context, the present study analyzes the governance of Port of Santos through individual interviews with port managers, based on a conceptual model that considers the key dimensions associated with port governance. The results reinforce the usefulness of the applied model and highlight some existing improvement opportunities in the port studied.

Construction Unit Rate Factor Modelling Using Neural Networks

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

IPO Price Performance and Signaling

This study examines the credibility of the signaling as explanation for IPO initial underpricing. Findings reveal the initial underpricing and the long-term underperformance of IPOs in Taiwan. However, we only find weak support for signaling as explanation of IPO underpricing.

The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (weed control with labourer power, cover removal with Hitachi F20 Excavator, and weed control with agricultural equipment mounted on a Ferguson 240S agriculture tractor) were utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with labourer force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for labourer power, 1250 TL for excavator and 1825 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed control method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Ultrasonographic Manifestations of Periventricular Leukomalacia in Preterm Neonates at Teaching Hospital Peradeniya, Sri Lanka

Periventricular Leukomalacia (PVL) is a White Matter Injury (WMI) of preterm neonatal brain. Objectives of the study were to assess the neuro-developmental outcome at one year of age and to determine a good protocol of cranial ultrasonography to detect PVL. Two hundred and sixty four preterm neonates were included in the study. Series of cranial ultrasound scans were done by using a dedicated neonatal head probe 4-10 MHz of Logic e portable ultrasound scanner. Clinical history of seizures, abnormal head growth (hydrocephalus or microcephaly) and developmental milestones were assessed and neurological examinations were done until one year of age. Among live neonates, 57% who had cystic PVL (Grades 2 and 3) manifested as cerebral palsy. In conclusion cystic PVL has permanent neurological disabilities like cerebral palsy. Good protocol of real time cranial ultrasonography to detect PVL is to perform scans at least once a week until one month and at term (40 weeks of gestation).

Dual-Task – Immersion in the Interactions of Simultaneously Performed Tasks

With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of taskinterrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematisation of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.

The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.