Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent

An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Investigation of the Effect of Number of Story on Different Structural Components of RC Building

The paper aims at investigating the effect of number of story on different structural components of reinforced concrete building due to gravity and lateral loading. For the study, three building models having same building plan of three, six and nine stories are analyzed and designed using software package. All the buildings are residential and are located in Dhaka city of Bangladesh. Lateral load including wind and earthquake loading are applied to the building along both longitudinal and transverse direction as per Bangladesh National Building Code (BNBC, 2006). Equivalent static force method is followed for the applied seismic loading. The present study investigates as well as compares mainly total steel requirement in different structural components for those buildings. It has been found that total longitudinal steel requirement for beams at each floor is 48.57% for three storied building, 61.36% for six storied building when the total percentage is taken as 100% in case of nine storied building. For an exterior column, the steel ratio is 2.1%, 3.06%, 4.55% for three, six and nine storied building respectively for the first three floors. In addition, it has been noted that total weight of longitudinal reinforcement of an interior column is 14.02 % for threestoried building and 43.12% for six storied building when the total reinforcement is considered 100% for nine storied building for the first three floors.

Molecular Dynamics Study on Mechanical Responses of Circular Graphene Nanoflake under Nanoindentation

Graphene, a single-atom sheet, has been considered as the most promising material for making future nanoelectromechanical systems as well as purely electrical switching with graphene transistors. Graphene-based devices have advantages in scaled-up device fabrication due to the recent progress in large area graphene growth and lithographic patterning of graphene nanostructures. Here we investigated its mechanical responses of circular graphene nanoflake under the nanoindentation using classical molecular dynamics simulations. A correlation between the load and the indentation depth was constructed. The nanoindented force in this work was applied to the center point of the circular graphene nanoflake and then, the resonance frequency could be tuned by a nanoindented depth. We found the hardening or the softening of the graphene nanoflake during its nanoindented-deflections, and such properties were recognized by the shift of the resonance frequency. The calculated mechanical parameters in the force-vs-deflection plot were in good agreement with previous experimental and theoretical works. This proposed schematics can detect the pressure via the deflection change or/and the resonance frequency shift, and also have great potential for versatile applications in nanoelectromechanical systems.

Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in this paper, is the use of an edge-based anisotropic diffusion tensor for the segmentation task by integrating both image edge geometry and Riemannian manifold (geodesic, metric tensor) to regularize the convergence contour and extract complex anatomical structures. We check the accuracy of the segmentation results on simulated brain MRI scans of single T1-weighted, T2-weighted and Proton Density sequences. We validate our approach using two different databases: BrainWeb database, and MRI Multiple sclerosis Database (MRI MS DB). We have compared, qualitatively and quantitatively, our approach with the well-known brain extraction algorithms. We show that using a Riemannian manifolds to medical image analysis improves the efficient results to brain extraction, in real time, outperforming the results of the standard techniques.

Human Absorbed Dose Estimation of a New IN-111 Imaging Agent Based on Rat Data

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In- 1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In- DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In- DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Here, we have shown the reaction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri 2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, for optimization we used density functional theory (DFT), under methods, explicitly including electrons correlations, for the final calculations as MB3LYP (Becke) (Lee–Yang–Parr) level of theory we used to obtain more exact results. This complex was calculated as electronic energy for molecular system, because the calculation accounting all electrons correlations interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp = C5H5) was found to be thermally stable. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages

The aim of the study is to compare behavioral and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. Sixty-three healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. EEG were recorded during execution of error-recognition task in Russian and English language (in all participants) and in native languages (Tuvinian or Yakut Turkic-speaking inhabitants). Reaction time (RT) and quality of task execution were chosen as behavioral measures. Amplitude and cortical distribution of P300 and P600 peaks of ERP were used as a measure of speech-related brain activity. In Tuvinians, there were no differences in the P300 and P600 amplitudes as well as in cortical topology for Russian and Tuvinian languages, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian language were the same as Russians had for native language. In Yakuts, brain reactions during Yakut and English language comprehension had no difference, while the Russian language comprehension was differed from both Yakut and English. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as foreign languages, but Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they do not use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Spatio-Temporal Data Mining with Association Rules for Lake Van

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Advantages of Fuzzy Control Application in Fast and Sensitive Technological Processes

This paper presents the advantages of fuzzy control use in technological processes control. The paper presents a real application of the Linguistic Fuzzy-Logic Control, developed at the University of Ostrava for the control of physical models in the Intelligent Systems Laboratory. The paper presents an example of a sensitive non-linear model, such as a magnetic levitation model and obtained results which show how modern information technologies can help to solve actual technical problems. A special method based on the LFLC controller with partial components is presented in this paper followed by the method of automatic context change, which is very helpful to achieve more accurate control results. The main advantage of the used system is its robustness in changing conditions demonstrated by comparing with conventional PID controller. This technology and real models are also used as a background for problem-oriented teaching, realized at the department for master students and their collaborative as well as individual final projects.

Coefficients of Some Double Trigonometric Cosine and Sine Series

In this paper, the results of Kano from one dimensional cosine and sine series are extended to two dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as class of semi convexity and class R are extended from one dimension to two dimensions. Further, the function f(x, y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function or not, has been studied. Moreover, some results are obtained which are generalization of Moricz’s results.

Mobile App versus Website: A Comparative Eye-Tracking Case Study of Topshop

The UK is leading in online retail and mobile adoption. However, there is a dearth of information relating to mobile apparel retail, and developing an understanding about consumer browsing and purchase behaviour in m-retail channel would provide apparel marketers, mobile website and app developers with the necessary understanding of consumers’ needs. Despite the rapid growth of mobile retail businesses, no published study has examined shopping behaviour on fashion mobile apps and websites. A mixed method approach helped to understand why fashion consumers prefer websites on smartphones, when diverse mobile apps are also available. The following research methods were employed: survey, eye-tracking experiments, observation, and interview with retrospective think aloud. The mobile gaze tracking device by SensoMotoric Instruments was used to understand frustrations in navigation and other issues facing consumers in mobile channel. This method helped to validate and compliment other traditional user-testing approaches in order to optimize user experience and enhance the development of mobile retail channel. The study involved eight participants - females aged 18 to 35 years old, who are existing mobile shoppers. The participants used the Topshop mobile app and website on a smart phone to complete a task according to a specified scenario leading to a purchase. The comparative study was based on: duration and time spent at different stages of the shopping journey, number of steps involved and product pages visited, search approaches used, layout and visual clues, as well as consumer perceptions and expectations. The results from the data analysis show significant differences in consumer behaviour when using a mobile app or website on a smart phone. Moreover, two types of problems were identified, namely technical issues and human errors. Having a mobile app does not guarantee success in satisfying mobile fashion consumers. The differences in the layout and visual clues seem to influence the overall shopping experience on a smart phone. The layout of search results on the website was different from the mobile app. Therefore, participants, in most cases, behaved differently on different platforms. The number of product pages visited on the mobile app was triple the number visited on the website due to a limited visibility of products in the search results. Although, the data on traffic trends held by retailers to date, including retail sector breakdowns for visits and views, data on device splits and duration, might seem a valuable source of information, it cannot explain why consumers visit many product pages, stay longer on the website or mobile app, or abandon the basket. A comprehensive list of pros and cons was developed by highlighting issues for website and mobile app, and recommendations provided. The findings suggest that fashion retailers need to be aware of actual consumers’ behaviour on the mobile channel and their expectations in order to offer a seamless shopping experience. Added to which is the challenge of retaining existing and acquiring new customers. There seem to be differences in the way fashion consumers search and shop on mobile, which need to be explored in further studies.

State-Of-The Art Practices in Bridge Inspection

Government reports and published research have flagged and brought to public attention the deteriorating condition of a large percentage of bridges in Canada and the United States. With the increasing number of deteriorated bridges in the US, Canada, and around the globe, condition assessment techniques of concrete bridges are evolving. Investigation for bridges’ defects such as cracks, spalls, and delamination and their level of severity are the main objectives of condition assessment. Inspection and rehabilitation programs are being implemented to monitor and maintain deteriorated bridge infrastructure. This paper highlights the state-of-the art of current practices being performed for concrete bridge inspection. The information is gathered from the literature and through a distributed questionnaire. The current practices in concrete bridge inspection rely on the use of hummer sounding and chain dragging tests. Non-Destructive Testing (NDT) techniques are not being utilized fully in the process. Nonetheless, they are being partially utilized by the recommendation of the bridge inspector after conducting visual inspection. Lanes are usually closed during the performance of visual inspection and bridge inspection in general.

A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Nowadays, illegal logging has been causing many effects including flash flood, avalanche, global warming, and etc. The purpose of this study was to maintain the earth ecosystem by keeping and regulate Malaysia’s treasurable rainforest by utilizing a new technology that will assist in real-time alert and give faster response to the authority to act on these illegal activities. The methodology of this research consisted of design stages that have been conducted as well as the system model and system architecture of the prototype in addition to the proposed hardware and software that have been mainly used such as microcontroller, sensor with the implementation of GSM, and GPS integrated system. This prototype was deployed at Royal Belum forest in December 2014 for phase 1 and April 2015 for phase 2 at 21 pinpoint locations. The findings of this research were the capture of data in real-time such as temperature, humidity, gaseous, fire, and rain detection which indicate the current natural state and habitat in the forest. Besides, this device location can be detected via GPS of its current location and then transmitted by SMS via GSM system. All of its readings were sent in real-time for further analysis. The data that were compared to meteorological department showed that the precision of this device was about 95% and these findings proved that the system is acceptable and suitable to be used in the field.

A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, few recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

A Study on Explicitation Strategies Employed in Persian Subtitling of English Crime Movies

The present study seeks to investigate the application of expansion strategy in Persian subtitles of English crime movies. More precisely, this study aims at classifying the different types of expansion used in subtitles as well as investigating the appropriateness or inappropriateness of the application of each type. To achieve this end, three movies; namely, The Net (1995), Contact (1997) and Mission Impossible 2 (2000), available with Persian subtitles, were selected for the study. To collect the data, the above mentioned movies were watched and those parts of the Persian subtitles in which expansion had been used were identified and extracted along with their English dialogs. Then, the extracted Persian subtitles were classified based on the reason that led to expansion in each case. Next, the appropriateness or inappropriateness of using expansion in the extracted Persian subtitles was descriptively investigated. Finally, an equivalent not containing any expansion was proposed for those cases in which the meaning could be fully transferred without this strategy. The findings of the study indicated that the reasons range from explicitation (explicitation of visual, co-textual and contextual information), mistranslation and paraphrasing to the preferences of subtitlers. Furthermore, it was found that the employment of expansion strategy was inappropriate in all cases except for those caused by explicitation of contextual information since correct and shorter equivalents which were equally capable of conveying the intended meaning could be posited for the original dialogs.

An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program

The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.

Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Development and Validation of Employee Trust Scale: Factor Structure, Reliability and Validity

The aim of this study was to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the Employee Trust Scale, a newly created instrument by the researchers. The Employee Trust Scale initially contained 82 items to measure employees’ trust toward their supervisors. A sample of 818 (343 females, 449 males) employees were selected randomly from public and private organization sectors in Kota Kinabalu, Sabah, Malaysia. Their ages ranged from 19 to 67 years old with a mean of 34.55 years old. Their average tenure with their current employer was 11.2 years (s.d. = 7.5 years). The respondents were asked to complete the Employee Trust Scale, as well as a managerial trust questionnaire from Mishra. The exploratory factor analysis on employees’ trust toward their supervisor’s extracted three factors, labeled ‘trustworthiness’ (32 items), ‘position status’ (11 items) and ‘relationship’ (6 items) which accounted for 62.49% of the total variance. Trustworthiness factors were re-categorized into three sub factors: competency (11 items), benevolence (8 items) and integrity (13 items). All factors and sub factors of the scales demonstrated clear reliability with internal consistency of Cronbach’s Alpha above .85. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of all factors and sub factors of the scale and the score on the managerial trust questionnaire, which measured the same construct. The convergent validity of Employee Trust Scale was further supported by the significant and positive inter-correlation between the factors and sub factors of the scale. The results suggest that the Employee Trust Scale is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to further validate the Scale.

The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

The activation volume of 6082T6 aluminum is investigated at different temperatures for grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increase and decrease with the testing temperature. It was revealed that, increase in strain rate sensitivity led to decrease in activation volume whereas increase in activation volume led to decrease in strain rate sensitivity.