Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Functioning of Turkic Elements in Modern Hindi

It is discussed about modern usage of adopted words and their vocabularies, Turkism usage fields, phonetic, grammatical and lexis-semantic assimilation of the typological-morphological structures of entering to different Hindi languages in comparative typological aspects in this scientific article. The lexis vocabulary is rich, the prevalence area is wide and it has researched the entering process of vocabulary into the great languages of Turkic elements from the speakers- numbers. The research work has worked on the base of Hindi vocabulary.

A High Accuracy Measurement Circuit for Soil Moisture Detection

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Heuristic Optimization Techniques for Network Reconfiguration in Distribution System

Network reconfiguration is an operation to modify the network topology. The implementation of network reconfiguration has many advantages such as loss minimization, increasing system security and others. In this paper, two topics about the network reconfiguration in distribution system are briefly described. The first topic summarizes its impacts while the second explains some heuristic optimization techniques for solving the network reconfiguration problem.

River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand

This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.

Study on Radio Link Availability in Millimeter Wave Range

In this paper, the link quality in SHF and EHF ranges are studied. In order to achieve high data rate higher frequencies must be used – centimeter waves (SHF), millimeter waves (EHF) or optical range. However, there are significant problem when a radio link work in that diapason – rain attenuation and attenuation in earth-s atmosphere. Based on statistical rain rates data for Bulgaria, the link availability can be determined, depending on the working frequency, the path length and the Power Budget of the link. For the calculations of rain attenuation and atmosphere-s attenuation the ITU recommendations are used.

Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Nowadays the construction industry is growing specially among developing counties. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) assign 7% of the whole diseases in the society, which make some limitations. One of the main factors, which are ended to WMSDs, is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study we conducted to find the major tasks of bar benders and the most important related risk factors. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, also about 59% of workers had troubles in their wrists, hands, and especially among workers who worked in steel bar bending. In 46% cases low back pain were prevalence. Considering with gathered data and results, awkward postures and long term tasks and its duration are known as the main risk factors in WMSDs among construction workers, so work-rest schedule and also tools design should be considered to make an ergonomic condition for the mentioned workers.

Steam Gasification of Palm Kernel Shell (PKS): Effect of Fe/BEA and Ni/BEA Catalysts and Steam to Biomass Ratio on Composition of Gaseous Products

This work presents the hydrogen production from steam gasification of palm kernel shell (PKS) at 700 oC in the presence of 5% Ni/BEA and 5% Fe/BEA as catalysts. The steam gasification was performed in two-staged reactors to evaluate the effect of calcinations temperature and the steam to biomass ratio on the product gas composition. The catalytic activity of Ni/BEA catalyst decreases with increasing calcinations temperatures from 500 to 700 oC. The highest H2 concentration is produced by Fe/BEA (600) with more than 71 vol%. The catalytic activity of the catalysts tested is found to correspond to its physicochemical properties. The optimum range for steam to biomass ratio if found to be between 2 to 4. Excess steam content results in temperature drop in the gasifier which is undesirable for the gasification reactions.

Flux Cored Arc Welding Parameter Optimization of AISI 316L (N) Austenitic Stainless Steel

Bead-on-plate welds were carried out on AISI 316L (N) austenitic stainless steel (ASS) using flux cored arc welding (FCAW) process. The bead on plates weld was conducted as per L25 orthogonal array. In this paper, the weld bead geometry such as depth of penetration (DOP), bead width (BW) and weld reinforcement (R) of AISI 316L (N) ASS are investigated. Taguchi approach is used as statistical design of experiment (DOE) technique for optimizing the selected welding input parameters. Grey relational analysis and desirability approach are applied to optimize the input parameters considering multiple output variables simultaneously. Confirmation experiment has also been conducted to validate the optimized parameters.

Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Classification Control for Discrimination between Interictal Epileptic and Non – Epileptic Pathological EEG Events

In this study, the problem of discriminating between interictal epileptic and non- epileptic pathological EEG cases, which present episodic loss of consciousness, investigated. We verify the accuracy of the feature extraction method of autocross-correlated coefficients which extracted and studied in previous study. For this purpose we used in one hand a suitable constructed artificial supervised LVQ1 neural network and in other a cross-correlation technique. To enforce the above verification we used a statistical procedure which based on a chi- square control. The classification and the statistical results showed that the proposed feature extraction is a significant accurate method for diagnostic discrimination cases between interictal and non-interictal EEG events and specifically the classification procedure showed that the LVQ neural method is superior than the cross-correlation one.

Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Effects of Entomopathogenic Nematodes on Suppressing Hairy Rose Beetle, Tropinota squalida Scop. (Coleoptera: Scarabaeidae) Population in Cauliflower Field in Egypt

The potential of entomopathogenic nematodes in suppressing T. squalida population on cauliflower from transplanting to harvest was evaluated. Significant reductions in plant infestation percentage and population density (/m2) were recorded throughout the plantation seasons, 2011 and 2012 before and after spraying the plants. The percent reduction in numbers/m2 was the highest in March for the treatments with Heterorhabditis indica Behera and Heterorhabditis bacteriophora Giza during the plantation season 2011, while at the plantation season 2012, the reduction in population density was the highest in January for Heterorhabditis Indica Behera and in February for H . bacteriophora Giza treatments. In a comparison test with conventional insecticides Hostathion and Lannate, there were no significant differences in control measures resulting from treatments with H. indica Behera, H. bacteriophora Giza and Lannate. At the plantation season is 2012. Also, the treatments reduced the economic threshold of T. squalida on cauliflower in this experiment as compared with before and after spraying with both the two entomopathogenic nematodes at both seasons 2011 and 2012. This means an increase in the marketability of heads harvested as a consequence of monthly treatments. 

A Feasible Path Selection QoS Routing Algorithm with two Constraints in Packet Switched Networks

Over the past several years, there has been a considerable amount of research within the field of Quality of Service (QoS) support for distributed multimedia systems. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining a feasible path that satisfies a number of QoS constraints. The problem of finding a feasible path is NPComplete if number of constraints is more than two and cannot be exactly solved in polynomial time. We proposed Feasible Path Selection Algorithm (FPSA) that addresses issues with pertain to finding a feasible path subject to delay and cost constraints and it offers higher success rate in finding feasible paths.

Bifurcation Analysis of Horizontal Platform System

Horizontal platform system (HPS) is popularly applied in offshore and earthquake technology, but it is difficult and time-consuming for regulation. In order to understand the nonlinear dynamic behavior of HPS and reduce the cost when using it, this paper employs differential transformation method to study the bifurcation behavior of HPS. The numerical results reveal a complex dynamic behavior comprising periodic, sub-harmonic, and chaotic responses. Furthermore, the results reveal the changes which take place in the dynamic behavior of the HPS as the external torque is increased. Therefore, the proposed method provides an effective means of gaining insights into the nonlinear dynamics of horizontal platform system.

Alphanumeric Hand-Prints Classification: Similarity Analysis between Local Decisions

This paper presents the analysis of similarity between local decisions, in the process of alphanumeric hand-prints classification. From the analysis of local characteristics of handprinted numerals and characters, extracted by a zoning method, the set of classification decisions is obtained and the similarity among them is investigated. For this purpose the Similarity Index is used, which is an estimator of similarity between classifiers, based on the analysis of agreements between their decisions. The experimental tests, carried out using numerals and characters from the CEDAR and ETL database, respectively, show to what extent different parts of the patterns provide similar classification decisions.

Study of Compost Maturity during Humification Process using UV-Spectroscopy

The increments of aromatic structures are widely used to monitor the degree of humification. Compost derived from mix manures mixed with agricultural wastes was studied. The compost collected at day 0, 7, 14, 21, 28, 35, 49, 77, 91, 105, and 119 was divided into 3 stages, initial stage at day 0, thermophilic stage during day 1-48, and mature stage during day 49-119. The change of highest absorptions at wavelength range between 210-235 nm during day 0- 49 implied that small molecules such as nitrates and carboxylic occurred faster than the aromatic molecules that were found at wavelength around 280 nm. The ratio of electron-transfer band at wavelength 253 nm by the benzonoid band at wavelength 230 nm (E253/E230) also gradually increased during the fermenting period indicating the presence of O-containing functional groups. This was in agreement with the shift change from aliphatic to aromatic structures as shown by the relationship with C/N and H/C ratios (r = - 0.631 and -0.717, p< 0.05) since both were decreasing. Although the amounts of humic acid (HA) were not different much during the humification process, the UV spectral deconvolution showed better qualitative characteristics to help in determining the compost quality. From this study, the compost should be used at day 49 and should not be kept longer than 3 months otherwise the quality of HA would decline regardless of the amounts of HA that might be rising. This implied that other processes, such as mineralization had an influence on the humification process changing HA-s structure and its qualities.

Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.