A PN Sequence Generator based on Residue Arithmetic for Multi-User DS-CDMA Applications

The successful use of CDMA technology is based on the construction of large families of encoding sequences with good correlation properties. This paper discusses PN sequence generation based on Residue Arithmetic with an effort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. All spreading codes with residual number system proposed earlier did not consider external interferences, multipath propagation, Doppler effect etc. In literature the use of residual arithmetic in DS-CDMA was restricted to encoding of already spread sequence; where spreading of sequence is done by some existing techniques. The novelty of this paper is the use of residual number system in generation of the PN sequences which is used to spread the message signal. The significance of cross-correlation factor in alleviating multi-access interference is also discussed. The RNS based PN sequence has superior performance than most of the existing codes that are widely used in DS-CDMA applications. Simulation results suggest that the performance of the proposed system is superior to many existing systems.

Experimental Technique for Vibration Reduction of a Motor Pumpin Medical Device

Many medical devices are driven by motor pumps. Some researchers reported that the vibration mainly affected medical devices using a motor pump. The purpose of this study was to examine the effect of stiffness and damping coefficient in a 3-dimensional (3D) model of a motor pump and spring. In the present paper, experimental and mathematical tests for the moments of inertia of the 3D model and the material properties were investigated by an INSTRON machine. The response surfaces could be generated by using 3D multi-body analysis and the design of experiment method. It showed that differences in contours of the response surface were clearly found for the particular area. Displacement of the center of the motor pump was decreased at K≈2000 N/M, C≈12.5 N-sec/M. However, the frequency was increased at K≈2000 N/M, C≈15 N-sec/M. In this study, this study suggested experimental technique for vibration reduction for a motor pump in medical device. The combined method suggested in this study will greatly contribute to design of medical devices concerning vibration and noise intervention.

Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Selection of Extracurricular Education Facilities and Organizational Performance Analysis of Meg-city Spatial System

With the rapid expansion of city scale and the excessive concentration of population, achieving relative equality of extracurricular education resources and improving spatial service performance of relevant facilities become necessary arduous tasks. In urban space, extracurricular education facilities should offer better service to its targeted area and promote the equality and efficiency of education, which is accomplished by the allocation of facilities. Based on questionnaire and survey for local students in Hangzhou City in 2009, this study classifies extracurricular education facilities in meg-city and defines the equalization of these facilities. Then it is suggested to establish extracurricular education facilities system according to the development level of city and demands of local students, and to introduce a spatial analysis method into urban planning through the aspects of spatial distribution, travel cost and spatial service scope. Finally, the practice of nine sub-districts of Hangzhou is studied.

Advantages of Combining Solar Greenhouse System and Trombe Wall in Hot and Dry Climate and Housing Design: The Case of Isfahan

Nowadays over-consumption of fossil energy in buildings especially in residential buildings and also considering the increase in populations, the crisis of energy shortage in a near future is predictable. The recent performance of developed countries in construction with the aim of decreasing fossil energies shows that these countries have understood the incoming crisis and has taken reasonable and basic actions in this regard. However, Iranian architecture, with several thousands years of history, has acquired and executed invaluable experiences in designing, adapting and coordinating with the nature. Architectural studies during the recent decades show that imitating modern western architecture results in high energy wastage beside the fact that it not reasonably adaptable and corresponded with the habits and customs of people unlike the architecture in the past which was compatible and adaptable with the climatic conditions and this necessitates optimal using of renewable energies more than ever. This paper studies problems of design, execution and living in today's houses and reviews the characteristics of climatic elements paying special attention to the performance of trombe wall and solar greenhouse in traditional houses and offers some suggestions for combining these two elements and a climatic strategy.

Feedstock Effects on Selecting the Appropriate Coil Configuration for Cracking Furnaces

In the present research, steam cracking of two types of feedstocks i.e., naphtha and ethane is simulated for Pyrocrack1-1 and 2/2 coil configurations considering two key parameters of coil outlet temperature (COT) and coil capacity using a radical based kinetic model. The computer model is confirmed using the industrial data obtained from Amirkabir Petrochemical Complex. The results are in good agreement with performance data for naphtha cracking in a wide range of severity (0.4-0.7), and for ethane cracking on various conversions (50-70). It was found that Pyrocrack2-2 coil type is an appropriate choice for steam cracking of ethane at reasonable ethylene yield while resulting in much lower tube wall temperature while Pyrocrack1-1 coil type is a proper selection for liquid feedstocks i.e. naphtha. It can be used for cracking of liquid feedstocks at optimal ethylene yield whereas not exceeding the allowable maximum tube temperature.

A Study of Lurking Behavior: The Desire Perspective

Lurking behavior is common in information-seeking oriented communities. Transferring users with lurking behavior to be contributors can assist virtual communities to obtain competitive advantages. Based on the ecological cognition framework, this study proposes a model to examine the antecedents of lurking behavior in information-seeking oriented virtual communities. This study argues desire for emotional support, desire for information support, desire for performance-approach, desire for performance -avoidance, desire for mastery-approach, desire for mastery-avoidance, desire for ability trust, desire for benevolence trust, and desire for integrity trust effect on lurking behavior. This study offers an approach to understanding the determinants of lurking behavior in online contexts.

A Quantum Algorithm of Constructing Image Histogram

Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.

View-Point Insensitive Human Pose Recognition using Neural Network

This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.

Combustion and Emission of a Compression Ignition Engine Fueled with Diesel and Hydrogen-Methane Mixture

The present study conducted experimental investigation on combustion and emission characteristics of compression ignition engine using diesel as pilot fuel and methane, hydrogen and methane/hydrogen mixture as gaseous fuels at 1800 rev min-1. The effect of gaseous fuel on peak cylinder pressure and heat release is modest at low to medium loads. At high load, the high combustion temperature and high quantity of pilot fuel contribute to better combustion efficiency for all kinds of gaseous fuels and increases the peak cylinder pressure. Enrichment of hydrogen in methane gradually increases the peak cylinder pressure. The brake thermal efficiency increases with higher hydrogen fraction at lower loads. Hydrogen addition in methane contributed to a proportional reduction of CO/CO2/HC emission without penalty of NOx. For particulate emission, methane and hydrogen, could both suppress the particle emission. 30% hydrogen fraction in methane is observed to be best in reducing the particulate emission.

Optical Wireless Sensor Networks Based on VLC with PLC-Ethernet Interface

We present a white LED-based optical wireless communication systems for indoor ubiquitous sensor networks. Each sensor node could access to the server through the PLC (Power Line Communication)-Ethernet interface. The proposed system offers a full-duplex wireless link by using different wavelengths to reduce the inter-symbol interference between uplink and downlink. Through the 1-to-n optical wireless sensor network and PLC modem, the mobile terminals send a temperature data to server. The data transmission speed and distance are 115.2kbps and about 60cm, respectively.

Adsorption Studies on the Removal of Pesticides(Carbofuran) using Activated Carbon from Rice Straw Agricultural Waste

In this study, we used a two-stage process and potassium hydroxide (KOH) to transform waste biomass (rice straw) into activated carbon and then evaluated the adsorption capacity of the waste for removing carbofuran from an aqueous solution. Activated carbon was fast and effective for the removal of carbofuran because of its high surface area. The native and carbofuran-loaded adsorbents were characterized by elemental analysis. Different adsorption parameters, such as the initial carbofuran concentration, contact time, temperature and pH for carbofuran adsorption, were studied using a batch system. This study demonstrates that rice straw can be very effective in the adsorption of carbofuran from bodies of water.

The role of pH on Cr(VI) Reduction and Removal by Arthrobacter Viscosus

Arthrobacter viscosus biomass was used for Cr(VI) biosorption. The effect of pH on Cr(VI) reduction and removal from aqueous solution was studied in the range of 1-4. The Cr(VI) removal involves both redox reaction and adsorption of metal ions on biomass surface. The removal rate of Cr(VI) was enhanced by very acid conditions, while higher solution pH values favored the removal of total chromium. The best removal efficiency and uptake were reached at pH 4, 72.5 % and 12.6 mgCr/gbiomass, respectively.

A Parallel Implementation of the Reverse Converter for the Moduli Set {2n, 2n–1, 2n–1–1}

In this paper, a new reverse converter for the moduli set {2n, 2n–1, 2n–1–1} is presented. We improved a previously introduced conversion algorithm for deriving an efficient hardware design for reverse converter. Hardware architecture of the proposed converter is based on carry-save adders and regular binary adders, without the requirement for modular adders. The presented design is faster than the latest introduced reverse converter for moduli set {2n, 2n–1, 2n–1–1}. Also, it has better performance than the reverse converters for the recently introduced moduli set {2n+1–1, 2n, 2n–1}

Grey Prediction Based Handoff Algorithm

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

A Neural Computing-Based Approach for the Early Detection of Hepatocellular Carcinoma

Hepatocellular carcinoma, also called hepatoma, most commonly appears in a patient with chronic viral hepatitis. In patients with a higher suspicion of HCC, such as small or subtle rising of serum enzymes levels, the best method of diagnosis involves a CT scan of the abdomen, but only at high cost. The aim of this study was to increase the ability of the physician to early detect HCC, using a probabilistic neural network-based approach, in order to save time and hospital resources.

Training Radial Basis Function Networks with Differential Evolution

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Transimpedance Amplifier for Integrated 3D Ultrasound Biomicroscope Applications

This paper presents the design and implementation of a fully integrated transimpedance amplifier (TIA) as the analog frontend receiver for Capacitive Micromachined Ultrasound Transducers (CMUTs) for ultrasound biomicroscope imaging application. The amplifier is designed to amplify the received signals from 17.5MHz to 52.5MHz with a center frequency of 35MHz. The TIA was fabricated in GF 0.18μm 1P6M 30V high voltage process. The measurement results show that the designed amplifier can reach a transimpedance gain of 61.08dBΩ and operating frequency from 17.5MHz to 100MHz with 1VP-P output voltage under 6V power supply.

Multimode Dynamics of the Beijing Road Traffic System

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases