Investigation of VN/TiN Multilayer Coatings on AZ91D Mg Alloys

To develop AZ91D magnesium alloys with improved properties, we have applied TiN and VN/TiN multilayer coatings using DC magnetron sputter technique. Coating structure, surface morphology, chemical bonding and corrosion resistance of coatings were analyzed by x-ray diffraction (XRD), scanning electron microscope (SEM), x-ray photoelectron spectroscopy (XPS), and tafel extrapolation method, respectively. XPS analysis reveal that VN overlayer reacts with oxygen at the VN/TiN interface and forms more stable TiN layer. Morphological investigations and the corrosion results show that VN/TiN multilayer thin film coatings are quite effective to optimize the corrosion resistance of Mg alloys.

Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Fuzzy Inference System (FIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, superplasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.

Evaluation of GSM Radiation Power Density in Three Major Cities in Nigeria

The levels of maximum power density of GSM signals in the cities of Lagos, Ibadan and Abuja were studied. Measurements were made with a calibrated hand held spectrum analyzer 200m away from 271 base stations, at 1.2m to the ground level. The maximum GSM 900 signal power density was 139.63μW/m2 in Lagos, 162.49μW/m2 in Ibadan and 5411.26μW/m2 in Abuja. Also, the maximum GSM 1800 signal power density was 296.82μW/m2 in Lagos, 116.82μW/m2 in Ibadan and 1263.00μW/m2 in Abuja. The level of power density of GSM 900 and GSM 1800 signals in the cities of Lagos, Ibadan and Abuja are far less than the recommended value of 4.5W/m2 for GSM 900 and 9.0 W/m2 for GSM 1800 by the ICNRP guideline. It can be concluded that exposure to GSM signals in these cities cannot contribute to the health detriments caused by thermal effects of radiofrequency radiation.

The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries: A Case Study

Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.

Port Governance Model by International Freight Forwarders’ Point of View: A Study at Port of Santos - Brazil

Due to the importance of ports to trade and economic development of the regions in which they are inserted, in recent decades the number of studies devoted to this subject has increased. Part of these studies considers the ports as business agglomerations and focuses on port governance. This is an important approach since the port performance is the result of activities performed by actors belonging to the port-logistics chain, which need to be properly coordinated. This coordination takes place through a port governance model. Given this context, this study aims to analyze the governance model of the port of Santos from the perspective of port customers. To do this, a closed-ended questionnaire based on a conceptual model that considers the key dimensions associated with port governance was applied to the international freight forwarders that operate in the port. The results show the applicability of the considered model and highlight improvement opportunities to be implemented at the port of Santos.

An Experimental Procedure for Design and Construction of Monocopter and Its Control Using Optical and GPS-Aided AHRS Sensors

Monocopter is a single-wing rotary flying vehicle which has the capability of hovering. This flying vehicle includes two dynamic parts in which more efficiency can be expected rather than other Micro UAVs due to the extended area of wing compared to its fuselage. Low cost and simple mechanism in comparison to other vehicles such as helicopter are the most important specifications of this flying vehicle. In the previous paper we discussed the introduction of the final system but in this paper, the experimental design process of Monocopter and its control algorithm has been investigated in general. Also the editorial bugs in the previous article have been corrected and some translational ambiguities have been resolved. Initially by constructing several prototypes and carrying out many flight tests the main design parameters of this air vehicle were obtained by experimental measurements. Eventually the required main monocopter for this project was constructed. After construction of the monocopter in order to design, implementation and testing of control algorithms first a simple optic system used for determining the heading angle. After doing numerous tests on Test Stand, the control algorithm designed and timing of applying control inputs adjusted. Then other control parameters of system were tuned in flight tests. Eventually the final control system designed and implemented using the AHRS sensor and the final operational tests performed successfully.

Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Micro Particles Effect on Mechanical and Thermal Properties of Ceramic Composites - A Review

Particles are the most common and cheapest reinforcement producing discontinuous reinforced composites with isotropic properties. Conventional fabrication methods can be used to produce a wide range of product forms, making them relatively inexpensive. Optimising composite development must include consideration of all the fundamental aspect of particles including their size, shape, volume fraction, distribution and mechanical properties. Research has shown that the challenges of low fracture toughness, poor crack growth resistance and low thermal stability can be overcome by reinforcement with particles. The unique properties exhibited by micro particles reinforced ceramic composites have made them to be highly attractive in a vast array of applications.

Diagnostic Investigation of Aircraft Performance at Different Winglet Cant Angles

Comprehensive numerical studies have been carried out to examine the best aerodynamic performance of subsonic aircraft at different winglet cant angles using a validated 3D k-ω SST model. In the parametric analytical studies NACA series of airfoils are selected. Basic design of the winglet is selected from the literature and flow features of the entire wing including the winglet tip effects have been examined with different cant angles varying from 150 to 600 at different angles of attack up to 140. We have observed, among the cases considered in this study that a case, with 150 cant angle the aerodynamics performance of the subsonic aircraft during takeoff was found better up to an angle of attack of 2.80 and further its performance got diminished at higher angles of attack. Analyses further revealed that increasing the winglet cant angle from 150 to 600 at higher angles of attack could negate the performance deterioration and additionally it could enhance the peak CL/CD on the order of 3.5%. The investigated concept of variable-cant-angle winglets appears to be a promising alternative for improving the aerodynamic efficiency of aircraft.

Dissociation of CDS from CVA Valuation under Notation Changes

In this paper the CVA computation of interest rate swap is presented based on its rating. Rating and probability default given by Moody’s Investors Service are used to calculate our CVA for a specific swap with different maturities. With this computation the influence of rating variation can be shown on CVA. Application is made to the analysis of Greek CDS variation during the period of Greek crisis between 2008 and 2011. The main point is the determination of correlation between the fluctuation of Greek CDS cumulative value and the variation of swap CVA due to change of rating.

Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Correlation and Prediction of Biodiesel Density

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010

Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration (CSCD) during 1944-2010 over Pelso, central Finland. Mann- Kendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p

Flood Control Structures in the River Göta Älv to Protect Gothenburg City (Sweden) during the 21st Century - Preliminary Evaluation

Climate change would cause mean sea level to rise +1 m by 2100. To prevent coastal floods resulting from the sea level rising, different flood control structures have been built, with acceptable protection levels. Gothenburg with the River Göta älv located on the southwest coast of Sweden is a vulnerable city to the accelerated rises in mean sea level. We evaluated using a sea barrage in the River Göta älv to protect Gothenburg during this century. The highest sea level was estimated to 2.95 m above the current mean sea level by 2100. To verify flood protection against such high sea levels, both barriers have to be closed. To prevent high water level in the River Göta älv reservoir, the barriers would be open when the sea level is low. The suggested flood control structures would successfully protect the city from flooding events during this century.

Effect of Age and Physiological Status on Some Serum Energy Metabolites and Progesterone in Ouled Djellal Breed Ewes in Algeria

The aim of this study is to determine the effect of age and physiological status on progesterone and energy metabolism of Ouled Djellal (O.D) breed ewes. 40 healthy ewes were divided into two groups, primiparous and multiparous, with 20 ewes in each group. The body weights (BW) (Kg) were 46.6 ± 4.20 and 59.2 ± 3.02, and consuming less 25 to 30% of their basal energetic requirements. The values of serum glucose, triglycerides and cholesterol were lower in pregnant than in non-pregnant ewes. The high to very high significant differences were found during the 15th week of pregnancy for glycaemia and triglyceridemia respectively. Concerning serum progesterone, a very highly significant difference (p

Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency

This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular waveguide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex permittivity is represented in terms of both the real and imaginary parts of permittivity in X-band frequency. The conductivity of RHCNTs shows increasing when the ratio of CNTs mixture increases. The composites materials were simulated using Computer Simulation Technology (CST) Microwave Studio simulation software. The shielding effectiveness of RHCNTs and pure rice husk was compared. The highest EMI SE of 30 dB is obtained for RHCNTs composites of 10 wt % CNTs with 10mm thickness.

Inhibitory Effects of Extracts and Isolates from Kigelia africana Fruits against Pathogenic Bacteria and Yeasts

Kigelia africana (Lam.) Benth. (Bignoniaceae) is a reputed traditional remedy for various human ailments such as skin diseases, microbial infections, melanoma, stomach troubles, metabolic disorders, malaria and general pains. In spite of the fruit being widely used for purposes related to its antibacterial and antifungal properties, the chemical constituents associated with the activity have not been fully identified. To elucidate the active principles, we evaluated the antimicrobial activity of fruit extracts and purified fractions against Staphylococcus aureus, Enterococcus faecalis, Moraxella catarrhalis, Escherichia coli, Candida albicans and Candida tropicalis. Shade-dried fruits were powdered and extracted with hydroalcoholic (1:1) mixture by soaking at room temperature for 72 h. The crude extract was further fractionated by column chromatography, with successive elution using hexane, dichloromethane, ethyl acetate, acetone and methanol. The dichloromethane and ethyl acetate fractions were combined and subjected to column chromatography to furnish a wax and oil from the eluates of 20% and 40% ethyl acetate in hexane, respectively. The GC-MS and GC×GC-MS results revealed that linoleic acid, linolenic acid, palmitic acid, arachidic acid and stearic acid were the major constituents in both oil and wax. The crude hydroalcoholic extract exhibited the strongest activity with MICs of 0.125-0.5 mg/mL, followed by the ethyl acetate (MICs = 0.125-1.0 mg/mL), dichloromethane (MICs = 0.250-2.0 mg/mL), hexane (MICs = 0.25- 2.0 mg/mL), acetone (MICs = 0.5-2.0 mg/mL) and methanol (MICs = 1.0-2.0 mg/mL), whereas the wax (MICs = 2.0-4.0 mg/mL) and oil (MICs = 4.0-8.0 mg/mL) showed poor activity. The study concludes that synergistic interactions of chemical constituents could be responsible for the antimicrobial activity of K. africana fruits, which needs a more holistic approach to understand the mechanism of its antimicrobial activity.

Modeling and Simulation of Utility Interfaced PV/Hydro Hybrid Electric Power System

Renewable energy is derived from natural processes that are replenished constantly. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and bio-fuels and hydrogen derived from renewable resources. Each of these sources has unique characteristics which influence how and where they are used. This paper presents the modeling the simulation of solar and hydro hybrid energy sources in MATLAB/SIMULINK environment. It simulates all quantities of Hybrid Electrical Power system (HEPS) such as AC output current of the inverter that injected to the load/grid, load current, grid current. It also simulates power output from PV and Hydraulic Turbine Generator (HTG), power delivered to or from grid and finally power factor of the inverter for PV, HTG and grid. The proposed circuit uses instantaneous p-q (real-imaginary) power theory.

The Nuclear Power Plant Environment Monitoring System through Mobile Units

This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project – Research of monitoring and evaluation of nonstandard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.

Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata (Mill.) Druce – An Ornamental Medicinal Plant

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Wellrooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.