Chromium Adsorption by Modified Wood

Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.

Improvement of Durability of Wood by Maleic Anhydride

Wood as a natural renewable material is vulnerable to degradation by microorganisms and susceptible to change in dimension by water. In order to effectively improve the durability of wood, an active reagent, maleic anhydride (Man) was selected for wood modification. Man was first dissolved into a solvent, and then penetrated into wood porous structure under a vacuum/pressure condition. After a final catalyst-thermal treatment, wood modification was finished. The test results indicate that acetone is a good solvent for transporting Man into wood matrix. SEM observation proved that wood samples treated by Man kept a good cellular structure, indicating a well penetration of Man into wood cell walls. FTIR analysis suggested that Man reacted with hydroxyl groups on wood cell walls by its ring-ether group, resulting in reduction of amount of hydroxyl groups and resultant good dimensional stability as well as fine decay resistance. Consequently, Man modifying wood to improve its durability is an effective method.