Abstract: In this paper we present a new method for over-height
vehicle detection in low headroom streets and highways using digital
video possessing. The accuracy and the lower price comparing to
present detectors like laser radars and the capability of providing
extra information like speed and height measurement make this
method more reliable and efficient. In this algorithm the features are
selected and tracked using KLT algorithm. A blob extraction
algorithm is also applied using background estimation and
subtraction. Then the world coordinates of features that are inside the
blobs are estimated using a noble calibration method. As, the heights
of the features are calculated, we apply a threshold to select overheight
features and eliminate others. The over-height features are
segmented using some association criteria and grouped using an
undirected graph. Then they are tracked through sequential frames.
The obtained groups refer to over-height vehicles in a scene.