Estimation of the Bit Side Force by Using Artificial Neural Network

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

Comparison between Minimum Direct and Indirect Jerks of Linear Dynamic Systems

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper proposes a simple yet very interesting relationship between the minimum direct and indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of direct and indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This is to allow us to simulate and compare visually and statistically the time history of control inputs employed by minimum direct and indirect jerk designs. By considering minimum indirect jerk problem, the numerical solution becomes much easier and yields to the similar results as minimum direct jerk problem.

Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

A Stable Pose Estimation Method for the Biped Robot using Image Information

This paper proposes a balance control scheme for a biped robot to trace an arbitrary path using image information. While moving, it estimates the zero moment point(ZMP) of the biped robot in the next step using a Kalman filter and renders an appropriate balanced pose of the robot. The ZMP can be calculated from the robot's pose, which is measured from the reference object image acquired by a CCD camera on the robot's head. For simplifying the kinematical model, the coordinates systems of individual joints of each leg are aligned and the robot motion is approximated as an inverted pendulum so that a simple linear dynamics, 3D-LIPM(3D-Linear Inverted Pendulum Mode) can be applied. The efficiency of the proposed algorithm has been proven by the experiments performed on unknown trajectory.

Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process

This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.

Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.

Bond Graph Modeling of Mechanical Dynamics of an Excavator for Hydraulic System Analysis and Design

This paper focuses on the development of bond graph dynamic model of the mechanical dynamics of an excavating mechanism previously designed to be used with small tractors, which are fabricated in the Engineering Workshops of Jomo Kenyatta University of Agriculture and Technology. To develop a mechanical dynamics model of the manipulator, forward recursive equations similar to those applied in iterative Newton-Euler method were used to obtain kinematic relationships between the time rates of joint variables and the generalized cartesian velocities for the centroids of the links. Representing the obtained kinematic relationships in bondgraphic form, while considering the link weights and momenta as the elements led to a detailed bond graph model of the manipulator. The bond graph method was found to reduce significantly the number of recursive computations performed on a 3 DOF manipulator for a mechanical dynamic model to result, hence indicating that bond graph method is more computationally efficient than the Newton-Euler method in developing dynamic models of 3 DOF planar manipulators. The model was verified by comparing the joint torque expressions of a two link planar manipulator to those obtained using Newton- Euler and Lagrangian methods as analyzed in robotic textbooks. The expressions were found to agree indicating that the model captures the aspects of rigid body dynamics of the manipulator. Based on the model developed, actuator sizing and valve sizing methodologies were developed and used to obtain the optimal sizes of the pistons and spool valve ports respectively. It was found that using the pump with the sized flow rate capacity, the engine of the tractor is able to power the excavating mechanism in digging a sandy-loom soil.

Combining Minimum Energy and Minimum Direct Jerk of Linear Dynamic Systems

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper proposes a simple yet very interesting when combining the minimum energy and jerk of indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of the minimum energy, the minimum jerk and combining them together are found using the dynamic optimization methods together with the numerical approximation. This is to allow us to simulate and compare visually and statistically the time history of state inputs employed by combining minimum energy and jerk designs. The numerical solution of minimum direct jerk and energy problem are exactly the same solution; however, the solutions from problem of minimum energy yield the similar solution especially in term of tendency.

Movement Analysis in Parkinson's Disease

We analyze hand dexterity in Parkinson-s disease patients (PD) and control subjects using a natural manual transport task (moving an object from one place to another). Eight PD patients and ten control subjects performed the task repeatedly at maximum speed both in OFF and ON medicated status. The movement parameters and the grip and load forces were recorded by a single optoelectronic camera and force transducers built in the especially designed object. Using the force and velocity signals, ten subsequent phases of the transport movement were defined and their durations were measured. The outline of 3D optical measurement is presented to obtain more precise movement trajectory.

Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology

The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.

Numerical Study of Hypersonic Glide Vehicle based on Blunted Waverider

The waverider is proved to be a remarkably useful configuration for hypersonic glide vehicle (HGV) in terms of the high lift-to-drag ratio. Due to the severe aerodynamic heating and the processing technical restriction, the sharp leading edge of waverider should be blunted, and then the flow characteristics and the aerodynamic performance along the trajectory will change. In this paper, the flow characteristics of a HGV, including the rarefied gas effect and transition phenomenon, were studied based on a reference trajectory. A numerical simulation was carried out to study the performance of the HGV under a typical condition.

A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the reference trajectory to a set operating point without inducing suction in the ventricle. The controller regulates the estimated mean pulsatile flow Qp and mean pulsatility index of pump rotational speed PIω that was generated from a model of the assist device. We recall the principle of the sliding mode control theory then we combine the feed-forward control design with the sliding mode control technique to follow the reference trajectory. The uncertainty is replaced by its upper and lower boundary. The controller was tested in a computer simulation covering two scenarios (preload and ventricular contractility). The simulation results prove the effectiveness and the robustness of the proposed controller

A Review on Technology Forecasting Methods and Their Application Area

Technology changes have been acknowledged as a critical factor in determining competitiveness of organization. Under such environment, the right anticipation of technology change has been of huge importance in strategic planning. To monitor technology change, technology forecasting (TF) is frequently utilized. In academic perspective, TF has received great attention for a long time. However, few researches have been conducted to provide overview of the TF literature. Even though some studies deals with review of TF research, they generally focused on type and characteristics of various TF, so hardly provides information about patterns of TF research and which TF method is used in certain technology industry. Accordingly, this study profile developments in and patterns of scholarly research in TF over time. Also, this study investigates which technology industries have used certain TF method and identifies their relationships. This study will help in understanding TF research trend and their application area.

Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking

For stable bipedal gait generation on the level floor, efficient restoring of mechanical energy lost by heel collision at the ground is necessary. Parametric excitation principle is one of the solutions. We dealt with the robot-s total center of mass as an inverted pendulum to consider the total dynamics of the robot. Parametrically excited walking requires the use of continuous target trajectory that is close to discontinuous optimal trajectory. In this paper, we proposed the new target trajectory based on a position in the walking direction. We surveyed relations between walking performance and the parameters that form the target trajectory via numerical simulations. As a result, it was found that our target trajectory has the similar characteristics of a parametrically excited inverted pendulum.

Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Noise Reduction in Image Sequences using an Effective Fuzzy Algorithm

In this paper, we propose a novel spatiotemporal fuzzy based algorithm for noise filtering of image sequences. Our proposed algorithm uses adaptive weights based on a triangular membership functions. In this algorithm median filter is used to suppress noise. Experimental results show when the images are corrupted by highdensity Salt and Pepper noise, our fuzzy based algorithm for noise filtering of image sequences, are much more effective in suppressing noise and preserving edges than the previously reported algorithms such as [1-7]. Indeed, assigned weights to noisy pixels are very adaptive so that they well make use of correlation of pixels. On the other hand, the motion estimation methods are erroneous and in highdensity noise they may degrade the filter performance. Therefore, our proposed fuzzy algorithm doesn-t need any estimation of motion trajectory. The proposed algorithm admissibly removes noise without having any knowledge of Salt and Pepper noise density.

Modeling and Control of Two Manipulators Handling a Flexible Beam

This paper seeks to develop simple yet practical and efficient control scheme that enables cooperating arms to handle a flexible beam. Specifically the problem studied herein is that of two arms rigidly grasping a flexible beam and such capable of generating forces/moments in such away as to move a flexible beam along a predefined trajectory. The paper develops a sliding mode control law that provides robustness against model imperfection and uncertainty. It also provides an implicit stability proof. Simulation results for two three joint arms moving a flexible beam, are presented to validate the theoretical results.