Characterization and Degradation Analysis of Tapioca Starch Based Biofilms

In this study, tapioca starch, which acts as natural polymer, was added in the blend in order to produce biodegradable product. Low density polyethylene (LDPE) and tapioca starch blends were prepared by extrusion and the test sample by injection moulding process. Ethylene vinyl acetate (EVA) acts as compatibilizer while glycerol as processing aid was added in the blend. The blends were characterized by using melt flow index (MFI), fourier transform infrared (FTIR) and the effects of water absorption to the sample. As the starch content increased, MFI of the blend was decreased. Tensile testing were conducted shows the tensile strength and elongation at break decreased while the modulus increased as the starch increased. For the biodegradation, soil burial test was conducted and the loss in weight was studied as the starch content increased. Morphology studies were conducted in order to show the distribution between LDPE and starch.

Starch Based Biofilms for Green Packaging

This current research focused on development of degradable starch based packaging film with enhanced mechanical properties. A series of low density polyethylene (LDPE)/tapioca starch compounds with various tapioca starch contents were prepared by twin screw extrusion with the addition of maleic anhydride grafted polyethylene as compatibilizer. Palm cooking oil was used as processing aid to ease the blown film process, thus, degradable film can be processed via conventional blown film machine. Studies on their characteristics, mechanical properties and biodegradation were carried out by Fourier Transform Infrared (FTIR) spectroscopy and optical properties, tensile test and exposure to fungi environment respectively. The presence of high starch contents had an adverse effect on the tensile properties of LDPE/tapioca starch blends. However, the addition of compatibilizer to the blends improved the interfacial adhesion between the two materials, hence, improved the tensile properties of the films. High content of starch amount also was found to increase the rate of biodegradability of LDPE/tapioca starch films. It can be proved by exposure of the film to fungi environment. A growth of microbes colony can be seen on the surface of LDPE/tapioca starch film indicates that the granular starch present on the surface of the polymer film is attacked by microorganisms, until most of it is assimilated as a carbon source.