Measuring Text-Based Semantics Relatedness Using WordNet

Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.

Measuring Text-Based Semantics Relatedness Using WordNet

Measuring semantic similarity between texts is calculating semantic relatedness between texts using various techniques. Our web application (Measuring Relatedness of Concepts-MRC) allows user to input two text corpuses and get semantic similarity percentage between both using WordNet. Our application goes through five stages for the computation of semantic relatedness. Those stages are: Preprocessing (extracts keywords from content), Feature Extraction (classification of words into Parts-of-Speech), Synonyms Extraction (retrieves synonyms against each keyword), Measuring Similarity (using keywords and synonyms, similarity is measured) and Visualization (graphical representation of similarity measure). Hence the user can measure similarity on basis of features as well. The end result is a percentage score and the word(s) which form the basis of similarity between both texts with use of different tools on same platform. In future work we look forward for a Web as a live corpus application that provides a simpler and user friendly tool to compare documents and extract useful information.

Incorporating Semantic Similarity Measure in Genetic Algorithm : An Approach for Searching the Gene Ontology Terms

The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm.

OCIRS: An Ontology-based Chinese Idioms Retrieval System

Chinese Idioms are a type of traditional Chinese idiomatic expressions with specific meanings and stereotypes structure which are widely used in classical Chinese and are still common in vernacular written and spoken Chinese today. Currently, Chinese Idioms are retrieved in glossary with key character or key word in morphology or pronunciation index that can not meet the need of searching semantically. OCIRS is proposed to search the desired idiom in the case of users only knowing its meaning without any key character or key word. The user-s request in a sentence or phrase will be grammatically analyzed in advance by word segmentation, key word extraction and semantic similarity computation, thus can be mapped to the idiom domain ontology which is constructed to provide ample semantic relations and to facilitate description logics-based reasoning for idiom retrieval. The experimental evaluation shows that OCIRS realizes the function of searching idioms via semantics, obtaining preliminary achievement as requested by the users.

Arabic Word Semantic Similarity

This paper is concerned with the production of an Arabic word semantic similarity benchmark dataset. It is the first of its kind for Arabic which was particularly developed to assess the accuracy of word semantic similarity measurements. Semantic similarity is an essential component to numerous applications in fields such as natural language processing, artificial intelligence, linguistics, and psychology. Most of the reported work has been done for English. To the best of our knowledge, there is no word similarity measure developed specifically for Arabic. In this paper, an Arabic benchmark dataset of 70 word pairs is presented. New methods and best possible available techniques have been used in this study to produce the Arabic dataset. This includes selecting and creating materials, collecting human ratings from a representative sample of participants, and calculating the overall ratings. This dataset will make a substantial contribution to future work in the field of Arabic WSS and hopefully it will be considered as a reference basis from which to evaluate and compare different methodologies in the field.

Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks

This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.

Computational Method for Annotation of Protein Sequence According to Gene Ontology Terms

Annotation of a protein sequence is pivotal for the understanding of its function. Accuracy of manual annotation provided by curators is still questionable by having lesser evidence strength and yet a hard task and time consuming. A number of computational methods including tools have been developed to tackle this challenging task. However, they require high-cost hardware, are difficult to be setup by the bioscientists, or depend on time intensive and blind sequence similarity search like Basic Local Alignment Search Tool. This paper introduces a new method of assigning highly correlated Gene Ontology terms of annotated protein sequences to partially annotated or newly discovered protein sequences. This method is fully based on Gene Ontology data and annotations. Two problems had been identified to achieve this method. The first problem relates to splitting the single monolithic Gene Ontology RDF/XML file into a set of smaller files that can be easy to assess and process. Thus, these files can be enriched with protein sequences and Inferred from Electronic Annotation evidence associations. The second problem involves searching for a set of semantically similar Gene Ontology terms to a given query. The details of macro and micro problems involved and their solutions including objective of this study are described. This paper also describes the protein sequence annotation and the Gene Ontology. The methodology of this study and Gene Ontology based protein sequence annotation tool namely extended UTMGO is presented. Furthermore, its basic version which is a Gene Ontology browser that is based on semantic similarity search is also introduced.

Organization Model of Semantic Document Repository and Search Techniques for Studying Information Technology

Nowadays, organizing a repository of documents and resources for learning on a special field as Information Technology (IT), together with search techniques based on domain knowledge or document-s content is an urgent need in practice of teaching, learning and researching. There have been several works related to methods of organization and search by content. However, the results are still limited and insufficient to meet user-s demand for semantic document retrieval. This paper presents a solution for the organization of a repository that supports semantic representation and processing in search. The proposed solution is a model which integrates components such as an ontology describing domain knowledge, a database of document repository, semantic representation for documents and a file system; with problems, semantic processing techniques and advanced search techniques based on measuring semantic similarity. The solution is applied to build a IT learning materials management system of a university with semantic search function serving students, teachers, and manager as well. The application has been implemented, tested at the University of Information Technology, Ho Chi Minh City, Vietnam and has achieved good results.