Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles

Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.

A Safety Analysis Method for Multi-Agent Systems

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Patient Support Program in Pharmacovigilance: Foster Patient Confidence and Compliance

The pharmaceutical companies are getting more inclined towards patient support programs (PSPs) which assist patients and/or healthcare professionals (HCPs) in more desirable disease management and cost-effective treatment. The utmost objective of these programs is patient care. The PSPs may include financial assistance to patients, medicine compliance programs, access to HCPs via phone or online chat centers, etc. The PSP has a crucial role in terms of customer acquisition and retention strategies. During the conduct of these programs, Marketing Authorisation Holder (MAH) may receive information related to concerned medicinal products, which is usually reported by patients or involved HCPs. This information may include suspected adverse reaction(s) during/after administration of medicinal products. Hence, the MAH should design PSP to comply with regulatory reporting requirements and avoid non-compliance during PV inspection. The emergence of wireless health devices is lowering the burden on patients to manually incorporate safety data, and building a significant option for patients to observe major swings in reference to drug safety. Therefore, to enhance the adoption of these programs, MAH not only needs to aware patients about advantages of the program, but also recognizes the importance of time of patients and commitments made in a constructive manner. It is indispensable that strengthening the public health is considered as the topmost priority in such programs, and the MAH is compliant to Pharmacovigilance (PV) requirements along with regulatory obligations.

VISMA: A Method for System Analysis in Early Lifecycle Phases

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Nutrition and Food Safety as Strategic Assets

The world is facing a growing food crisis. The concerns of food nutritional value, food safety and food security are becoming increasingly real. There is also a direct relationship to the risk of diseases, particularly chronic diseases, to the food we consume. So, there are increasing concerns about the modern day food ecosystem creating foods that can provide the nutritional components for organ function sustenance, as well as, taking a serious view on diet-related diseases. This paper addresses some of the above concerns and gives an overview of the current global situation relating to food nutrition and safety. The paper reviews nutritional aspects of food today compared to those of the last century, compares whole foods found in supermarkets versus those organically grown, as well as population behaviour towards food choices. It provides scientific insights into the effects of some of the global trends such as climate change and other changes environmental changes, and presents what individuals and corporations are doing to use the latest nutritional technologies as strategic assets. Finally, it briefly highlights some of the innovative solutions that are being applied to address several of the above concerns.

Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli

Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.

Steering Velocity Bounded Mobile Robots in Environments with Partially Known Obstacles

This paper presents a method for steering velocity bounded mobile robots in environments with partially known stationary obstacles. The exact location of obstacles is unknown and only a probability distribution associated with the location of the obstacles is known. Kinematic model of a 2-wheeled differential drive robot is used as the model of mobile robot. The presented control strategy uses the Artificial Potential Field (APF) method for devising a desired direction of movement for the robot at each instant of time while the Constrained Directions Control (CDC) uses the generated direction to produce the control signals required for steering the robot. The location of each obstacle is considered to be the mean value of the 2D probability distribution and similarly, the magnitude of the electric charge in the APF is set as the trace of covariance matrix of the location probability distribution. The method not only captures the challenges of planning the path (i.e. probabilistic nature of the location of unknown obstacles), but it also addresses the output saturation which is considered to be an important issue from the control perspective. Moreover, velocity of the robot can be controlled during the steering. For example, the velocity of robot can be reduced in close vicinity of obstacles and target to ensure safety. Finally, the control strategy is simulated for different scenarios to show how the method can be put into practice.

An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

An Open-Label Pilot Study of Efficacy and Safety of 2% Curcuma aeruginosa Roxb. Extract Cream in the Treatment of Mild to Moderate Facial Seborrheic Dermatitis

Background: Seborrheic dermatitis is a common chronic skin condition affecting the face, scalp, chest, and trunk. The cause of seborrheic dermatitis is still unknown. Sebum production, lipid composition, hormone levels, and Malassezia species have been suggested as important factors in the development of seborrheic dermatitis. Curcuma aeruginosa Roxb. extract-containing cream with anti-inflammatory and anti-androgenic properties may be beneficial for treating mild to moderate facial seborrheic dermatitis. Objectives: We evaluated the efficacy and safety of 2% C. aeruginosa Roxb. extract-containing cream in the treatment of mild to moderate seborrheic dermatitis. Methods: This was a prospective, open-label, and non-comparative study. Ten adult patients clinically diagnosed with mild to moderate seborrheic dermatitis were enrolled in a four-week study. The 2% C. aeruginosa Roxb. cream was applied twice daily to a lesional area on the face for four weeks. The Scoring Index (SI) ranking system on days 14 and 28 was compared with that at baseline to determine the efficacy of treatment. The adverse events (burning sensation and erythema) were evaluated on days 14 and 28 to determine the safety of the treatment. Results: Significant improvement was observed in the reduction of the mean SI at day 14 (2.9) and 28 (1.4) compared to that at baseline (4.9). An adverse reaction was observed on day 14 (mild erythema 20% and mild burning sensation 10%) and was resolved by the end of the study. Conclusion: This open-label pilot study has shown that there was a significant improvement in the severity in these seborrheic patients and most reported they were satisfied with it. Reported adverse events were all mild.

Modal Analysis for Study of Minor Historical Architecture

Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.

Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams

Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.

The Influences of Marketplace Knowledge, General Product Class Knowledge, and Knowledge in Meat Product with Traceability on Trust in Meat Traceability

Since the outbreak of mad cow disease and bird flu, consumers have become more concerned with meat quality and safety. As a result, meat traceability is adopted as one approach to handle consumers’ concern in this issue. Nevertheless, in Thailand, meat traceability is rarely used as a marketing tool to persuade consumers. As a consequence, the present study attempts to understand consumer trust in the meat traceability system by conducting a study in this country to examine the impact of three types of consumer knowledge on this trust. The study results reveal that out of three types of consumer knowledge, marketplace knowledge was the sole predictor of consumer trust in meat traceability and it has a positive influence. General product class knowledge and knowledge in meat products with traceability, however, did not significantly influence consumer trust. The research results provide several implications and directions for future study.

Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies

In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.

A Practical Model for Managing Beach Safety Focusing on Tourist Drownings in Koh Samui, Thailand

This paper aims to investigate management of beach safety with a focus on tourist drownings in Samui. The data collected in this investigation will then lead to the proposal of a practical management model suitable for use in Samui. Qualitative research was conducted in the following manner: nine stakeholders from local government organizations and tourism businesses were interviewed in-depth. Additionally, a best practice case study from Phuket was applied to analyze beach safety. Twelve foreign tourists were also interviewed. Then, a focus group comprised of 32 people was used to determine practical solutions for enhancing tourists’ safety on the beach in Samui. A steering committee to coordinate between public and private organizations was proposed to manage and enhance tourists’ safety. A practical model is proposed to increase the safety level of tourists in Samui

Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Mecano-Reliability Approach Applied to a Water Storage Tank Placed on Ground

Traditionally, the dimensioning of storage tanks is conducted with a deterministic approach based on partial coefficients of safety. These coefficients are applied to take into account the uncertainties related to hazards on properties of materials used and applied loads. However, the use of these safety factors in the design process does not assure an optimal and reliable solution and can sometimes lead to a lack of robustness of the structure. The reliability theory based on a probabilistic formulation of constructions safety can respond in an adapted manner. It allows constructing a modelling in which uncertain data are represented by random variables, and therefore allows a better appreciation of safety margins with confidence indicators. The work presented in this paper consists of a mecano-reliability analysis of a concrete storage tank placed on ground. The classical method of Monte Carlo simulation is used to evaluate the failure probability of concrete tank by considering the seismic acceleration as random variable.

Urban Corridor Management Strategy Based on Intelligent Transportation System

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Food Safety Aspects of Pesticide Residues in Spice Paprika

Environmental and health safety of condiments used for spicing food products in food processing or by culinary means receive relatively low attention, even though possible contamination of spices may affect food quality and safety. Contamination surveys mostly focus on microbial contaminants or their secondary metabolites, mycotoxins. Chemical contaminants, particularly pesticide residues, however, are clearly substantial factors in the case of given condiments in the Capsicum family including spice paprika and chilli. To assess food safety and support the quality of the Hungaricum product spice paprika, the pesticide residue status of spice paprika and chilli is assessed on the basis of reported pesticide contamination cases and non-compliances in the Rapid Alert System for Food and Feed of the European Union since 1998.