Bio-Surfactant Production and Its Application in Microbial EOR

There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.

Investigation on Pore Water Pressure in Core of Karkheh Dam

Pore water pressure is normally because of consolidation, compaction and water level fluctuation on reservoir. Measuring, controlling and analyzing of pore water pressure have significant importance in both of construction and operation period. Since end of 2002, (dam start up) nature of KARKHEH dam has been analyzed by using the gathered information from instrumentation system of dam. In this lecture dam condition after start up have been analyzed by using the gathered data from located piezometers in core of dam. According to TERZAGHI equation and records of piezometers, consolidation lasted around five years during early years of construction stage, and current pore water pressure in core of dam is caused by water level fluctuation in reservoir. Although there is time lag between water level fluctuation and results of piezometers. These time lags have been checked and the results clearly show that one of the most important causes of it is distance between piezometer and reservoir.

Analysis Fraction Flow of Water versus Cumulative Oil Recoveries Using Buckley Leverett Method

To derive the fractional flow equation oil displacement will be assumed to take place under the so-called diffusive flow condition. The constraints are that fluid saturations at any point in the linear displacement path are uniformly distributed with respect to thickness; this allows the displacement to be described mathematically in one dimension. The simultaneous flow of oil and water can be modeled using thickness averaged relative permeability, along the centerline of the reservoir. The condition for fluid potential equilibrium is simply that of hydrostatic equilibrium for which the saturation distribution can be determined as a function of capillary pressure and therefore, height. That is the fluids are distributed in accordance with capillary-gravity equilibrium. This paper focused on the fraction flow of water versus cumulative oil recoveries using Buckley Leverett method. Several field cases have been developed to aid in analysis. Producing watercut (at surface conditions) will be compared with the cumulative oil recovery at breakthrough for the flowing fluid.

Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method

In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.

Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.

Correlations between Cleaning Frequency of Reservoir and Water Tower and Parameters of Water Quality

This study was investigated on sampling and analyzing water quality in water reservoir & water tower installed in two kind of residential buildings and school facilities. Data of water quality was collected for correlation analysis with frequency of sanitization of water reservoir through questioning managers of building about the inspection charts recorded on equipment for water reservoir. Statistical software packages (SPSS) were applied to the data of two groups (cleaning frequency and water quality) for regression analysis to determine the optimal cleaning frequency of sanitization. The correlation coefficient (R) in this paper represented the degree of correlation, with values of R ranging from +1 to -1.After investigating three categories of drinking water users; this study found that the frequency of sanitization of water reservoir significantly influenced the water quality of drinking water. A higher frequency of sanitization (more than four times per 1 year) implied a higher quality of drinking water. Results indicated that sanitizing water reservoir & water tower should at least twice annually for achieving the aim of safety of drinking water.

The Using of Mixing Amines in an Industrial Gas Sweetening Plant

Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.

Run-off Storage in Sand Reservoirs as an Alternative Source of Water Supply for Rura land Semi-arid areas of South Africa

Abstraction of water from the dry river sand-beds is well-known as an alternative source of water during dry seasons. Internally, because of the form of sand particles, voids are created which can store water in the riverbeds. Large rivers are rare in South Africa. Many rivers are sand river types and without water during the prolonged dry periods. South Africa has not taken full advantage of water storage in sand as a solution to the growing water scarcity both in urban and rural areas. The paper reviews the benefits of run-off storage in sand reservoirs gained from other arid areas and need for adoption in rural areas of South Africa as an alternative water supply where it is probable.

Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Assessment of Water Pollution of Kowsar Dam Reservoir

The reservoir of Kowsar dam supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages for some provinces in south of Iran. The Kowsar dam is located next to the city of Dehdashat in Kohgiluye and Boyerahmad province in southern Iran. There are some towns and villages on the Kowsar dam watersheds, which Dehdasht and Choram are the most important and populated twons in this area, which can to be sources of pollution for water reservoir of the Kowsar dam . This study was done to determine of water pollution of the Kowsar dam reservoir which is one of the most important water resources of Kohkiloye and Boyerahmad and Bushehr provinces in south-west Iran. In this study , water samples during 12 months were collected to examine Biochemical Oxygen Demand (BOD) and Dissolved Oxygen(DO) as a criterion for evaluation of water pollution of the reservoir. In summary ,the study has shown Maximum, average and minimum levels of BOD have observed 25.9 ,9.15 and 2.3 mg/L respectively and statistical parameters of data such as standard deviation , variance and skewness have calculated 7.88, 62 and 1.54 respectively. Finally the results were compared with Iranian national standards. Among the analyzed samples, as the maximum value of BOD (25.9 mg/L) was observed at the May 2010 , was within the maximum admissible limits by the Iranian standards.

Simulation of Snow Covers Area by a Physical based Model

Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.