High-Speed Train Planning in France, Lessons from Mediterranean TGV-Line

To fight against the economic crisis, French Government, like many others in Europe, has decided to give a boost to high-speed line projects. This paper explores the implementation and decision-making process in TGV projects, their evolutions, especially since the Mediterranean TGV-line. This project was probably the most controversial, but paradoxically represents today a huge success for all the actors involved. What kind of lessons we can learn from this experience? How to evaluate the impact of this project on TGV-line planning? How can we characterize this implementation and decision-making process regards to the sustainability challenges? The construction of Mediterranean TGV-line was the occasion to make several innovations: to introduce more dialog into the decisionmaking process, to take into account the environment, to introduce a new project management and technological innovations. That-s why this project appears today as an example in terms of integration of sustainable development. In this paper we examine the different kinds of innovations developed in this project, by using concepts from sociology of innovation to understand how these solutions emerged in a controversial situation. Then we analyze the lessons which were drawn from this decision-making process (in the immediacy and a posteriori) and the way in which procedures evolved: creation of new tools and devices (public consultation, project management...). Finally we try to highlight the impact of this evolution on TGV projects governance. In particular, new methods of implementation and financing involve a reconfiguration of the system of actors. The aim of this paper is to define the impact of this reconfiguration on negotiations between stakeholders.

A Model for Bidding Markup Decisions Making based-on Agent Learning

Bidding is a very important business function to find latent contractors of construction projects. Moreover, bid markup is one of the most important decisions for a bidder to gain a reasonable profit. Since the bidding system is a complex adaptive system, bidding agent need a learning process to get more valuable knowledge for a bid, especially from past public bidding information. In this paper, we proposed an iterative agent leaning model for bidders to make markup decisions. A classifier for public bidding information named PIBS is developed to make full use of history data for classifying new bidding information. The simulation and experimental study is performed to show the validity of the proposed classifier. Some factors that affect the validity of PIBS are also analyzed at the end of this work.

Wind Load Characteristics in Libya

Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.

The Cost Structure of Intermodal Transportation: The Chilean Case

This study defines a methodology to compute unitary costs for freight transportation modes. The main objective was to gather relevant costs data to support the formulation and evaluation of railway, road, pipelines and port projects. This article will concentrate on the following steps: Compilation and analysis of relevant modal cost studies, Methodological adjustments to make cost figures comparable between studies, Definition of typology and scope of transportation modes, Analysis and validation of cost values for relevant freight transportation modes in Chile. In order to define the comparison methodology for the costs between the different transportation modes, it was necessary to consider that the relevant cost depends on who performs the comparison. Thus, for the transportation user (e.g. exporter) the pertinent costs are the mode tariffs, whereas from the operators perspective (e.g. rail manager), the pertinent costs are the operating costs of each mode.

Achieving Performance in an Organization through Marketing Innovation

Innovation is becoming more and more important in modern society. There are a lot of researches on different kinds of innovation but marketing innovation is one kind of innovation that has not been studied frequently before. Marketing innovation is defined as a new way in which companies can market themselves to potential or existing customers. The study shows some key elements for marketing innovation that are worth paying attention to when implementing marketing innovation projects. Examples of such key elements are: paying attention to the neglected market, suitable market segmentatio reliable market information, public relationship, increased customer value, combination of market factors, explore different marketing channels and the use of technology in combination with what? Beside the key elements for marketing innovation, we also present some risks that may occur, such as cost, market uncertainty, information leakage, imitation and overdependence on experience. By proposing a set of indicators to measure marketing innovation, the article offers solutions for marketing innovation implementation so that any organization can achieve optimal results.

Risk Quantification for Tunnel Excavation Process

Construction of tunnels is connected with high uncertainty in the field of costs, construction period, safety and impact on surroundings. Risk management became therefore a common part of tunnel projects, especially after a set of fatal collapses occurred in 1990's. Such collapses are caused usually by combination of factors that can be divided into three main groups, i.e. unfavourable geological conditions, failures in the design and planning or failures in the execution. This paper suggests a procedure enabling quantification of the excavation risk related to extraordinary accidents using FTA and ETA tools. It will elaborate on a common process of risk analysis and enable the transfer of information and experience between particular tunnel construction projects. Further, it gives a guide for designers, management and other participants, how to deal with risk of such accidents and how to make qualified decisions based on a probabilistic approach.

Multi-Criteria Decision-Making Selection Model with Application to Chemical Engineering Management Decisions

Chemical industry project management involves complex decision making situations that require discerning abilities and methods to make sound decisions. Project managers are faced with decision environments and problems in projects that are complex. In this work, case study is Research and Development (R&D) project selection. R&D is an ongoing process for forward thinking technology-based chemical industries. R&D project selection is an important task for organizations with R&D project management. It is a multi-criteria problem which includes both tangible and intangible factors. The ability to make sound decisions is very important to success of R&D projects. Multiple-criteria decision making (MCDM) approaches are major parts of decision theory and analysis. This paper presents all of MCDM approaches for use in R&D project selection. It is hoped that this work will provide a ready reference on MCDM and this will encourage the application of the MCDM by chemical engineering management.

Application of Data Mining Tools to Predicate Completion Time of a Project

Estimation time and cost of work completion in a project and follow up them during execution are contributors to success or fail of a project, and is very important for project management team. Delivering on time and within budgeted cost needs to well managing and controlling the projects. To dealing with complex task of controlling and modifying the baseline project schedule during execution, earned value management systems have been set up and widely used to measure and communicate the real physical progress of a project. But it often fails to predict the total duration of the project. In this paper data mining techniques is used predicting the total project duration in term of Time Estimate At Completion-EAC (t). For this purpose, we have used a project with 90 activities, it has updated day by day. Then, it is used regular indexes in literature and applied Earned Duration Method to calculate time estimate at completion and set these as input data for prediction and specifying the major parameters among them using Clem software. By using data mining, the effective parameters on EAC and the relationship between them could be extracted and it is very useful to manage a project with minimum delay risks. As we state, this could be a simple, safe and applicable method in prediction the completion time of a project during execution.

Software Technology Behind Computer Accounting

The main problems of data centric and open source project are large number of developers and changes of core framework. Model-View-Control (MVC) design pattern significantly improved the development and adjustments of complex projects. Entity framework as a Model layer in MVC architecture has simplified communication with the database. How often are the new technologies used and whether they have potentials for designing more efficient Enterprise Resource Planning (ERP) system that will be more suited to accountants?

Investigation of Time Delay Factors in Global Software Development

Global Software Development (GSD) projects are passing through different boundaries of a company, country and even in other continents where time zone differs between both sites. Beside many benefits of such development, research declared plenty of negative impacts on these GSD projects. It is important to understand problems which may lie during the execution of GSD project with different time zones. This research project discussed and provided different issues related to time delays in GSD projects. In this paper, authors investigated some of the time delay factors which usually lie in GSD projects with different time zones. This investigation is done through systematic review of literature. Furthermore, the practices to overcome these delay factors which have already been reported in literature and GSD organizations are also explored through literature survey and case studies.

Contextual Factors in the Decision Making of Industrialized Building System Technology

Currently, the Malaysian construction industry is focusing on transforming construction processes from conventional building methods to the Industrialized Building System (IBS). Still, research on the decision making of IBS technology adoption with the influence of contextual factors is scarce. The purpose of this paper is to explore how contextual factors influence the IBS decision making in building projects which is perceived by those involved in construction industry namely construction stakeholders and IBS supply chain members. Theoretical background, theoretical frameworks and literatures which identify possible contextual factors that influence decision making towards IBS technology adoption are presented. This paper also discusses the importance of contextual factors in IBS decision making, highlighting some possible crossover benefits and making some suggestions as to how these can be utilized. Conclusions are drawn and recommendations are made with respect to the perception of socio-economic, IBS policy and IBS technology associated with building projects.

Payment Problems, Cash Flow and Profitability of Construction Project: A System Dynamics Model

The ubiquitous payment problems within construction industry of China are notoriously hard to be resolved, thus lead to a series of impacts to the industry chain. Among of them, the most direct result is affecting the normal operation of contractors negatively. A wealth of research has already discussed reasons of the payment problems by introducing a number of possible improvement strategies. But the causalities of these problems are still far from harsh reality. In this paper, the authors propose a model for cash flow system of construction projects by introducing System Dynamics techniques to explore causal facets of the payment problem. The effects of payment arrears on both cash flow and profitability of project are simulated into four scenarios by using data from real projects. Simulating results show visible clues to help contractors quantitatively determining the consequences for the construction project that arise from payment delay.

A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal

The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.

Schedule Management of an Enterprise Receiving Orders Considering Dependency between Unit Tasks of a Collaborative Project

This study suggests how an order-receiving company can avoid disclosing schedule information on unit tasks to the order-placing company when carrying out a collaborative project on the value chain in an order-oriented industry. Specifically, it suggests methods for keeping schedule information confidential, and categorizes potential situations by inter-task dependency. Lastly, an approach to select the most optimal non-disclosure method is discussed. With the methods for not disclosing work-related information suggested in the study, order-receiving companies can logically deal with political issues relating to the question of whether or not to disclose information upon the execution of a collaborative project in cooperation with an order-placing firm. Moreover, order-placing companies can monitor undistorted information, while respecting the legitimate rights of an order-receiving company. Therefore, it is fair to say that the suggestions made in this study will contribute to the smooth operation of collaborative intercompany projects.

Structure and Functions of Urban Surface Water System in Coastal Areas: The Case of Almere

In the context of global climate change, flooding and sea level rise is increasingly threatening coastal urban areas, in which large population is continuously concentrated. Dutch experiences in urban water system management provide high reference value for sustainable coastal urban development projects. Preliminary studies shows the urban water system in Almere, a typical Dutch polder city, have three kinds of operational modes, achieving functions as: (1) coastline control – strong multiple damming system prevents from storm surges and maintains sufficient capacity upon risks; (2) high flexibility – large area and widely scattered open water system greatly reduce local runoff and water level fluctuation; (3) internal water maintenance – weir and sluice system maintains relatively stable water level, providing excellent boating and landscaping service, coupling with water circulating model maintaining better water quality. Almere has provided plenty of hints and experiences for ongoing development of coastal cities in emerging economies.