Solid State Drive End to End Reliability Prediction, Characterization and Control

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Digital Transformation of Payment Systems Using Field Service Management

Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.

Spatial Planning and Tourism Development with Sustainability Model of the Territorial Tourist with Land Use Approach

In the last decade, with increasing tourism destinations and tourism growth, we are witnessing the widespread impacts of tourism on the economy, environment and society. Tourism and its related economy are now undergoing a transformation and as one of the key pillars of business economics, it plays a vital role in the world economy. Activities related to tourism and providing services appropriate to it in an area, like many economic sectors, require the necessary context on its origin. Given the importance of tourism industry and tourism potentials of Yazd province in Iran, it is necessary to use a proper procedure for prioritizing different areas for proper and efficient planning. One of the most important goals of planning is foresight and creating balanced development in different geographical areas. This process requires an accurate study of the areas and potential and actual talents, as well as evaluation and understanding of the relationship between the indicators affecting the development of the region. At the global and regional level, the development of tourist resorts and the proper distribution of tourism destinations are needed to counter environmental impacts and risks. The main objective of this study is the sustainable development of suitable tourism areas. Given that tourism activities in different territorial areas require operational zoning, this study deals with the evaluation of territorial tourism using concepts such as land use, fitness and sustainable development. It is essential to understand the structure of tourism development and the spatial development of tourism using land use patterns, spatial planning and sustainable development. Tourism spatial planning implements different approaches. However, the development of tourism as well as the spatial development of tourism is complex, since tourist activities can be carried out in different areas with different purposes. Multipurpose areas have great important for tourism because it determines the flow of tourism. Therefore, in this paper, by studying the development and determination of tourism suitability that is related to spatial development, it is possible to plan tourism spatial development by developing a model that describes the characteristics of tourism. The results of this research determine the suitability of multi-functional territorial tourism development in line with spatial planning of tourism.

Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Shifting Paradigms of Culture: Rise of Secular Sensibility in Indian Literature

Burgeoning demand of ‘Secularism’ has shaken the pillars of cultural studies in the contemporary literature. The perplexity of the culturally estranged term ‘secular’ gives rise to temporal ideologies across the world. Hence, it is high time to scan this concept in the context of Indian lifestyle which is a blend of assimilated cultures woven in multiple religious fabrics. The infliction of such secular taste is depicted in literary productions like ‘Satanic Verses’ and ‘An Area of Darkness’. The paper conceptually makes a cross-cultural analysis of anti-religious Indian literary texts, assessing its revitalization in current times. Further, this paper studies the increasing popularity of secular sensibility in the contemporary times. The mushrooming elements of secularism such as abstraction, spirituality, liberation, individualism give rise to a seemingly newer idea i.e. ‘Plurality’ making the literature highly hybrid. This approach has been used to study Indian modernity reflected in its literature. Seminal works of stalwarts are used to understand the consequence of this cultural synthesis. Conclusively, this theoretical research inspects the efficiency of secular culture, intertwined with internal coherence and throws light on the plurality of texts in Indian literature.

The Effectiveness of Synthesizing A-Pillar Structures in Passenger Cars

The Toyota Camry is one of the best-selling cars in America. It is economical, reliable, and most importantly, safe. These attributes allowed the Camry to be the trustworthy choice when choosing dependable vehicle. However, a new finding brought question to the Camry’s safety. Since 1997, the Camry received a “good” rating on its moderate overlap front crash test through the Insurance Institute of Highway Safety. In 2012, the Insurance Institute of Highway Safety introduced a frontal small overlap crash test into the overall evaluation of vehicle occupant safety test. The 2012 Camry received a “poor” rating on this new test, while the 2015 Camry redeemed itself with a “good” rating once again. This study aims to find a possible solution that Toyota implemented to reduce the severity of a frontal small overlap crash in the Camry during a mid-cycle update. The purpose of this study is to analyze and evaluate the performance of various A-pillar shapes as energy absorbing structures in improving passenger safety in a frontal crash. First, A-pillar structures of the 2012 and 2015 Camry were modeled using CAD software, namely SolidWorks. Then, a crash test simulation using ANSYS software, was applied to the A-pillars to analyze the behavior of the structures in similar conditions. Finally, the results were compared to safety values of cabin intrusion to determine the crashworthy behaviors of both A-pillar structures by measuring total deformation. This study highlights that it is possible that Toyota improved the shape of the A-pillar in the 2015 Camry in order to receive a “good” rating from the IIHS safety evaluation once again. These findings can possibly be used to increase safety performance in future vehicles to decrease passenger injury or fatality.

Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Behavioral Mapping and Post-Occupancy Evaluation of Meeting-Point Design in an International Airport

The meeting behavior is a pervasive kind of interaction, which often occurs between the passenger and the shuttle. However, the meeting point set up at the Taoyuan International Airport is too far from the entry-exit, often causing passengers to stop searching near the entry-exit. When the number of people waiting for the rush hour increases, it often results in chaos in the waiting area. This study tried to find out what is the key factor to promote the rapid finding of each other between the passengers and the pick-ups. Then we implemented several design proposals to improve the meeting behavior of passengers and pick-ups based on behavior mapping and post-occupancy evaluation to enhance their meeting efficiency in unfamiliar environments. The research base is the reception hall of the second terminal of Taoyuan International Airport. Behavioral observation and mapping are implemented on the entry of inbound passengers into the welcome space, including the crowd distribution of the people who rely on the separation wall in the waiting area, the behavior of meeting and the interaction between the inbound passengers and the pick-ups. Then we redesign the space planning and signage design based on post-occupancy evaluation to verify the effectiveness of space plan and signage design. This study found that passengers ignore existing meeting-point designs which are placed on distant pillars at both ends. The position of the screen affects the area where the receiver is stranded, causing the pick-ups to block the passenger's moving line. The pick-ups prefer to wait where it is easy to watch incoming passengers and where it is closest to the mode of transport they take when leaving. Large visitors tend to gather next to landmarks, and smaller groups have a wide waiting area in the lobby. The location of the meeting point chosen by the pick-ups is related to the view of the incoming passenger. Finally, this study proposes an improved design of the meeting point, setting the traffic information in it, so that most passengers can see the traffic information when they enter the country. At the same time, we also redesigned the pick-ups desk to improve the efficiency of passenger meeting.

The Evaluation of Gravity Anomalies Based on Global Models by Land Gravity Data

The Earth system generates different phenomena that are observable at the surface of the Earth such as mass deformations and displacements leading to plate tectonics, earthquakes, and volcanism. The dynamic processes associated with the interior, surface, and atmosphere of the Earth affect the three pillars of geodesy: shape of the Earth, its gravity field, and its rotation. Geodesy establishes a characteristic structure in order to define, monitor, and predict of the whole Earth system. The traditional and new instruments, observables, and techniques in geodesy are related to the gravity field. Therefore, the geodesy monitors the gravity field and its temporal variability in order to transform the geodetic observations made on the physical surface of the Earth into the geometrical surface in which positions are mathematically defined. In this paper, the main components of the gravity field modeling, (Free-air and Bouguer) gravity anomalies are calculated via recent global models (EGM2008, EIGEN6C4, and GECO) over a selected study area. The model-based gravity anomalies are compared with the corresponding terrestrial gravity data in terms of standard deviation (SD) and root mean square error (RMSE) for determining the best fit global model in the study area at a regional scale in Turkey. The least SD (13.63 mGal) and RMSE (15.71 mGal) were obtained by EGM2008 for the Free-air gravity anomaly residuals. For the Bouguer gravity anomaly residuals, EIGEN6C4 provides the least SD (8.05 mGal) and RMSE (8.12 mGal). The results indicated that EIGEN6C4 can be a useful tool for modeling the gravity field of the Earth over the study area.

Assessment of Socio-Cultural Sustainability: A Comparative Analysis of Two Neighborhoods in Kolkata Metropolitan Area

To transform a space into a better livable and sustainable zone, United Nations Summit in New York 2015, has decided upon 17 sustainable development goals (SDGs) that approach directly to achieve inclusive, people-centric, sustainable developments. Though sustainability has been majorly constructed by four pillars, namely, Ecological, Economic, Social and Cultural, but it is essentially reduced to economic and ecological consideration in the context of developing countries. Therefore, in most cases planning has reduced its ambit to concentrate around the tangible infrastructure, ignoring the fundamentals of socio-cultural heritage. With the accentuating hype of infrastructural augmentation, lack of emphasis of traditional concerns like ethnicity and social connection have further diluted the situation, disintegrating cultural continuity. As cultural continuity lacks its cohesion, it’s growing absence increasingly acts as a catalyst to degrade the heritage structures, spaces around and linking these structures, and the ability of stakeholders in identifying themselves rooted in that particular space. Hence, this paper will argue that sustainability depends on the people and their interaction with their surroundings, their culture and livelihood. The interaction between people and their surroundings strengthen community building and social interaction that abides by stakeholders reverting back to their roots. To assess the socio-cultural sustainability of the city of Kolkata, two study areas are selected, namely, an old settlement from the northern part of the city of Kolkata (KMA), imbued with social connection, age-old cultural and ethnic bonding and, another cluster of new high-rises coming up in the Newtown area having portions of planned city extension on the eastern side of the city itself. Whereas, Newtown prioritizes the surging post-industrial trends of economic aspiration and ecological aspects of urban sustainability; the former settlements of northern Kolkata still continue to represent the earliest community settlement of the British-colonial-cum native era and even the pre-colonial era, permeated with socio-cultural reciprocation. Thus, to compare and assess the inlayed organizational structure of both the spaces in the two cases, selected areas have been surveyed to portray their current imageability. The argument of this paper is structured in 5parts. First, an introduction of the idea has been forwarded, Secondly, a literature review has been conducted to ground the proposed ideas, Thirdly, methodology has been discussed and appropriate case study areas have been selected, Fourthly, surveys and analyses has been forwarded and lastly, the paper has arrived at a set of conclusions by suggesting a threefold development to create happy, healthy and sustainable community.

The Effect of Glass Thickness on Stress in Vacuum Glazing

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs

Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.

Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves

Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.

Impact of Terrorism as an Asymmetrical Threat on the State's Conventional Security Forces

The main focus of this research will be on analyzing correlative links between terrorism as an asymmetrical threat and the consequences it leaves on conventional security forces. The methodology behind the research will include qualitative research methods focusing on comparative analysis of books, scientific papers, documents and other sources, in order to deduce, explore and formulate the results of the research. With the coming of the 21st century and the rising multi-polar, new world threats quickly emerged. The realistic approach in international relations deems that relations among nations are in a constant state of anarchy since there are no definitive rules and the distribution of power varies widely. International relations are further characterized by egoistic and self-orientated human nature, anarchy or absence of a higher government, security and lack of morality. The asymmetry of power is also reflected on countries' security capabilities and its abilities to project power. With the coming of the new millennia and the rising multi-polar world order, the asymmetry of power can be also added as an important trait of the global society which consequently brought new threats. Among various others, terrorism is probably the most well-known, well-based and well-spread asymmetric threat. In today's global political arena, terrorism is used by state and non-state actors to fulfill their political agendas. Terrorism is used as an all-inclusive tool for regime change, subversion or a revolution. Although the nature of terrorist groups is somewhat inconsistent, terrorism as a security and social phenomenon has a one constant which is reflected in its political dimension. The state's security apparatus, which was embodied in the form of conventional armed forces, is now becoming fragile, unable to tackle new threats and to a certain extent outdated. Conventional security forces were designed to defend or engage an exterior threat which is more or less symmetric and visible. On the other hand, terrorism as an asymmetrical threat is a part of hybrid, special or asymmetric warfare in which specialized units, institutions or facilities represent the primary pillars of security. In today's global society, terrorism is probably the most acute problem which can paralyze entire countries and their political systems. This problem, however, cannot be engaged on an open field of battle, but rather it requires a different approach in which conventional armed forces cannot be used traditionally and their role must be adjusted. The research will try to shed light on the phenomena of modern day terrorism and to prove its correlation with the state conventional armed forces. States are obliged to adjust their security apparatus to the new realism of global society and terrorism as an asymmetrical threat which is a side-product of the unbalanced world.

Development of a Multi-Factorial Instrument for Accident Analysis Based on Systemic Methods

The present research is built on three major pillars, commencing by making some considerations on accident investigation methods and pointing out both defining aspects and differences between linear and non-linear analysis. The traditional linear focus on accident analysis describes accidents as a sequence of events, while the latest systemic models outline interdependencies between different factors and define the processes evolution related to a specific (normal) situation. Linear and non-linear accident analysis methods have specific limitations, so the second point of interest is mirrored by the aim to discover the drawbacks of systemic models which becomes a starting point for developing new directions to identify risks or data closer to the cause of incidents/accidents. Since communication represents a critical issue in the interaction of human factor and has been proved to be the answer of the problems made by possible breakdowns in different communication procedures, from this focus point, on the third pylon a new error-modeling instrument suitable for risk assessment/accident analysis will be elaborated.

Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index

Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.

Theoretical Study of Flexible Edge Seals for Vacuum Glazing

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Place and Role of Corporate Governance in Japan

In a broad sense, corporate governance covers the organization of the control and management. The term is also used in a narrower sense, to refer to the relationship between shareholders, and the company’s board. There are a lot of discussions devoted to the understanding of the corporate governance role and its principles. In this paper, we are going to describe the definition of corporate governance as a control system and its principles, and find the role of corporate governance and its pillars. Finally, we are going to drop the theoretical study on the case of Japan.

Developing Creative and Critically Reflective Digital Learning Communities

This paper is a qualitative case study analysis of the development of a fully online learning community of graduate students through arts-based community building activities. With increasing numbers and types of online learning spaces, it is incumbent upon educators to continue to push the edge of what best practices look like in digital learning environments. In digital learning spaces, instructors can no longer be seen as purveyors of content knowledge to be examined at the end of a set course by a final test or exam. The rapid and fluid dissemination of information via Web 3.0 demands that we reshape our approach to teaching and learning, from one that is content-focused to one that is process-driven. Rather than having instructors as formal leaders, today’s digital learning environments require us to share expertise, as it is the collective experiences and knowledge of all students together with the instructors that help to create a very different kind of learning community. This paper focuses on innovations pursued in a 36 hour 12 week graduate course in higher education entitled “Critical and Reflective Practice”. The authors chronicle their journey to developing a fully online learning community (FOLC) by emphasizing the elements of social, cognitive, emotional and digital spaces that form a moving interplay through the community. In this way, students embrace anywhere anytime learning and often take the learning, as well as the relationships they build and skills they acquire, beyond the digital class into real world situations. We argue that in order to increase student online engagement, pedagogical approaches need to stem from two primary elements, both creativity and critical reflection, that are essential pillars upon which instructors can co-design learning environments with students. The theoretical framework for the paper is based on the interaction and interdependence of Creativity, Intuition, Critical Reflection, Social Constructivism and FOLCs. By leveraging students’ embedded familiarity with a wide variety of technologies, this case study of a graduate level course on critical reflection in education, examines how relationships, quality of work produced, and student engagement can improve by using creative and imaginative pedagogical strategies. The authors examine their professional pedagogical strategies through the lens that the teacher acts as facilitator, guide and co-designer. In a world where students can easily search for and organize information as self-directed processes, creativity and connection can at times be lost in the digitized course environment. The paper concludes by posing further questions as to how institutions of higher education may be challenged to restructure their credit granting courses into more flexible modules, and how students need to be considered an important part of assessment and evaluation strategies. By introducing creativity and critical reflection as central features of the digital learning spaces, notions of best practices in digital teaching and learning emerge.