A Study of Agile-Based Approaches to Improve Software Quality

Agile Software development approaches and techniques are being considered as efficient, effective, and popular methods to the development of software. Agile software developments are useful for developing high-quality software that completes client requirements with zero defects, and in short delivery period. In agile software development methodology, quality is related to coding, which means quality, is managed through the use of approaches like refactoring, pair programming, test-driven development, behavior-driven development, acceptance test-driven development, and demand-driven development. The quality of software is measured using metrics like the number of defects during the development and improvement of the software. Usage of the above-mentioned methods or approaches reduces the possibilities of defects in developed software, and hence improves quality. This paper focuses on the study of agile-based quality methods or approaches for software development that ensures improved quality of software as well as reduced cost, and customer satisfaction.

Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

JEWEL: A Cosmological Model Due to the Geometrical Displacement of Galactic Object Like Black, White and Worm Holes

Stellar objects such as black, white and worm holes can be the subject of speculative reasoning if represented in a simplified and geometric form in order to be able to move them; and the cosmological model is one of the most important contents in relation to speculations that can then open the way to other aspects that are not strictly speculative but practical, precisely in the Universe represented by us. In this work, thanks to the hypothesis of a very large number of black, white and worm holes present in our Universe, we imagine that they can be moved; it was therefore thought to align them on a plane and following a redistribution, and the boundaries of this plane were ideally joined, giving rise to a sphere that has the stellar objects examined radially distributed. Thanks to geometrical displacements of these stellar objects that do not make each one of them lose their functionality in the region in which they are located, at the end of the speculative process it is possible to highlight a spherical layer that allows a flow from the outside and inside this spherical shell allowing to relate to other external and internal spherical layers; this aspect that seems useful to describe the universe we live in, for example inside one of the spherical shells just described. The name "Jewel" was chosen because, imagining the speculative process present in this work at the end of steps, the cosmological model tends to be "luminous". This cosmological model includes, for each internal part of a generic layer, different and numerous moments of our universe thanks to an eternal flow inward. There are many aspects to explore, one of these is the connection between the outermost and the inside of the spherical layers.

A Study of Learning to Enhance Career Skills Consistent with Disruptive Innovation in the Creative Strategies for Advertising Course

This project is a study of learning activities of creating experience from actual work performance to enhance career skills and technological usage abilities for uses in advertising career work performance for undergraduate students who enroll in the Creative Strategies for Advertising Course. The instructional model consisted of two learning approaches: (1) simulation-based learning, which is the learning with the use of simulations of working in various sections of creative advertisement work with their own work process and steps as well as the virtual technology learning in advertising companies; and (2) project-based learning, which is the learning that the learners engage in actual work performance based on the process of creating and producing creative advertisement works to be present on new media channels. The results of learning management showed that the effects on the students in various aspects were as follows: (1) the students had experience in the advertising process at the higher level; and (2) the students had work performance skills from the actual work performance that enabled them to possess the abilities to create and present their own work; also, they had created more efficient work outcomes and disseminated them on new media channels at a better level.

Multi-Criteria Nautical Ports Capacity and Services Planning

This paper is a result of implemented research on proposed introduced methodology for nautical ports capacity planning by introducing a multi-criteria approach of defined criteria in the Adriatic Sea region. The purpose was analyzing the determinants - characteristics of infrastructure and services of nautical ports capacity allocated, especially nowadays due to COVID-19 pandemic, as crucial for successful operation of nautical ports. Giving the importance of the defined priorities for short-term and long-term planning is essential not only in terms of the development of nautical tourism, but also in terms of developing the maritime system, but unfortunately this is not always carried out. Evaluation of the use of resources should follow from a detailed analysis of all aspects of resources bearing in mind that nautical tourism used resources in a sustainable manner and generates effects in the tourism and maritime sectors. Consequently, identified multiplier effect of nautical tourism, which should be defined and quantified in detail, should be one of the major competitive products on the Croatian Adriatic and the Mediterranean. Research of nautical tourism is necessary to quantify the effects and required planning system development. In the future, the greatest threat to long-term sustainable development of nautical tourism can be its further uncontrolled or unlimited and undirected development, especially under pressure markedly higher demand than supply for new moorings in the Mediterranean. Results of this implemented research are applicable to nautical ports management and decision makers of maritime transport system development. This paper will present implemented research and obtained result - developed methodology for nautical port capacity planning - Port Capacity Planning Multi-criteria decision-making. A proposed methodological approach of multi-criteria capacity planning includes four criteria (spatial - transport, cost - infrastructure, ecological and organizational criteria, and additional services). The importance of the criteria and sub-criteria is evaluated and carried out the basis for a sensitivity analysis of the importance of the criteria and sub-criteria. Based on the analysis of the identified and quantified importance of certain criteria and sub-criteria as well as sensitivity analysis and analysis of changes of the quantified importance scientific and applicable results will be presented. These obtained results have practical applicability by management of nautical ports in the planning of increasing capacity and further development and for the adaptation of existing nautical ports. The obtained research is applicable and replicable in other seas and results are especially important and useful in this COVID-19 pandemic challenging maritime development framework.

A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing

With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.

Patient Perspectives on Telehealth during the Pandemic in the United States

Telehealth is an advanced technology using digital information and telecommunication facilities that provide access to health services from a distance. It slows the transmission factor of COVID-19, especially for elderly patients and patients with chronic diseases during the pandemic. Therefore, understanding patient perspectives on telehealth services and the factors impacting their option of telehealth service will shed light on the measures that healthcare providers can take to improve the quality of telehealth services. This study aimed to evaluate perceptions of telehealth services among different patient groups and explore various aspects of telehealth utilization in the United States during the COVID-19 pandemic. An online survey distributed via social media platforms was used to collect research data. In addition to the descriptive statistics, both correlation and regression analyses were conducted to test research hypotheses. The empirical results highlighted that the factors such as accessibility to telehealth services and the type of specialty clinics that the patients required play important roles in the effectiveness of telehealth services they received. However, the results found that patients’ waiting time to receive telehealth services and their annual income did not significantly influence their desire to select receiving healthcare services via telehealth. The limitations of the study and future research directions are discussed.

Effects of Channel Bed Slope on Energy Dissipation of Different Types of Piano Key Weir

The present investigation aims to study the effect of channel bed slopes on energy dissipation across the different types of Piano Key Weir (PK weir or PKW) under the free-flow conditions in rigid rectangular channels. To this end, three different types (type-A, type-B, and type-C) of PKW models were tested and examined. To document and quantify this experimental investigation, a total of 270 tests were performed, including detailed observations of the flow field. The results show that the energy dissipation of all PKW models increases with the bed slopes and decreases with increasing the discharge over the weirs. In addition, the energy dissipation over the PKW varies significantly with the geometry of the weir. The type-A PKW has shown the highest energy dissipation than the other PKWs. As the bottom slope changed from Sb = 0% to 1.25%, the energy dissipation increased by about 8.5%, 9.1%, and 10.55% for type-A, type-B, and type-C, respectively.

Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman, Jordan

Analyzing the old and bringing in the new is an ever-ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman, the paper seeks to make the exception the rule, by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Spatial Correlation of Channel State Information in Real LoRa Measurement

The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially LoRaWAN. In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated with each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems to get access to a wider band.

Embedded Electrochemistry with a Miniaturized, Drone-Based, Potentiostat System for Remote Detection Chemical Warfare Agents

The development of an embedded miniaturized drone-based system for remote detection of Chemical Warfare Agents (CWAs) is proposed. The paper focuses on the software/hardware system design of the electrochemical Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) signal processing for future deployment on drones. The paper summarizes the progress made towards hardware and electrochemical signal processing for signature detection of CWA. Also, the miniature potentiostat signal is validated by comparing it with the high-end lab potentiostat signal.

Profitability and Budgeting of Kenaf Cultivation and Fiber Production in Kelantan Districts

The purpose of the analysis is estimation of viability and profitability of kenaf plant farming in Kelantan State. The monetary information was gathered through interviewing kenaf growers as well group discussion. In addition, the production statistics were collected from Kenaf factory administrative group. The monetary data were analyzed using the Precision financial Calculator. For kenaf production per hectare three scenarios of productivity were adopted, they were 15, 12 and ten; the research results exposed that, when kenaf productivity was 15 ton and the agronomist received financial supports from kenaf administration, the margin profit reached up to 37% which is almost dual profitability that is expected without government support. The financial analysis explains that, the adopted scenarios of the productivity are feasible when Benefit Cost Ratio (BCR) was used as financial indicator. Nonetheless, the kenaf productivity of 15 ton is the superlative viable among the others and payback period is 5 years which equals to middle period time to return the invested amount back. The study concluded that for the farmer to increase the productivity of kenaf per hectare the well farming practices as well as continuously farmers financial support are highly needed.

Paradigm of Digital Twin Application in Project Management in Architecture, Engineering and Construction

With the growing trend of adoption of advanced technologies like, building information modeling, artificial intelligence, wireless network, the collaboration and integration of these technologies into digital twin become more prominent in architecture, engineering and construction (AEC) industry in view of the nature and scale of AEC industry which efficiently adopted the digital twin. Digital twin is provided to be effective for AEC professions for design and project management. The digital concept is continuously developing and it is vital for AEC professionals and other stakeholders to understand the digital twin concept and the adoption of various advanced building technologies related to the AEC industry. This paper is to review the application of digital twins application in project management in AEC industry and highlight the challenge of AEC partitioners faced by the revolution of technologies including digital twins and building information modelling (BIM) for further research and future study.

An Empirical Assessment of Sustainability of an Urban Water Supply Service Delivery

Urban population is rapidly increasing in Ilorin, (the capital of Kwara State of Nigeria) along with related increased water demand. The inadequacies of water supply services have forced the populace to depend on dug wells, boreholes, water tankers, street vendors etc. for their water needs. People spend hours daily carrying jerry can all around to collect and queue for water at the public water tap with high opportunity cost both in time and economic wastage. This situation motivated this study to assess the sustainability of an urban water supply services to unravel the factors undermining the effective delivery of services. Contingent Valuation Method was used to place value on water supply services using the Double Bounded Dichotomous Choice format for willingness to pay elicitation. A database was created with Microsoft Excel and Stata 12 Software to model and evaluate the variables that affect household willingness to pay. The results of the study reveal that about 92% of the total households surveyed were connected to the Government water supply out of which 87% reported that they were not satisfied with the existing services. The results furthered revealed that respondents are willing to pay ₦2500 monthly to enjoy sustainable water supply service delivery.

Rehabilitation of Contaminated Surface and Groundwater for Selected Sites in the Illawarra and Sydney Regions Utilising Nanotechnology

A comprehensive study was conducted to examine the removal of inorganic contaminants that exist in surface and groundwater in the Illawarra and Sydney regions. The ability of multi-walled carbon nanotubes (MWCNT), as a generation of membrane technology, was examined using a dead-end filtration cell setup. A set of ten compounds were examined in this study that represent the significant inorganic cations and anions commonly found in contaminated surface and groundwater. The performance of MWCNT buckypaper membranes in excluding anions was found to be better than that of its cation exclusion. This phenomenon can be attributed to the Donnan exclusion mechanism (charge repulsion mechanism). Furthermore, the results revealed that phosphate recorded the highest exclusion value reaching 69.2%, whereas the lowest rejection value was for potassium where no removal occurred (0%). The reason for this is that the molecular weight of phosphate (95.0 g/mol) is greater than the molecular weight of potassium (39.10 g/mol).

Using Statistical Significance and Prediction to Test Long/Short Term Public Services and Patients Cohorts: A Case Study in Scotland

Health and Social care (HSc) services planning and scheduling are facing unprecedented challenges, due to the pandemic pressure and also suffer from unplanned spending that is negatively impacted by the global financial crisis. Data-driven approaches can help to improve policies, plan and design services provision schedules using algorithms that assist healthcare managers to face unexpected demands using fewer resources. The paper discusses services packing using statistical significance tests and machine learning (ML) to evaluate demands similarity and coupling. This is achieved by predicting the range of the demand (class) using ML methods such as Classification and Regression Trees (CART), Random Forests (RF), and Logistic Regression (LGR). The significance tests Chi-Squared and Student’s test are used on data over a 39 years span for which data exist for services delivered in Scotland. The demands are associated using probabilities and are parts of statistical hypotheses. These hypotheses, as their NULL part, assume that the target demand is statistically dependent on other services’ demands. This linking is checked using the data. In addition, ML methods are used to linearly predict the above target demands from the statistically found associations and extend the linear dependence of the target’s demand to independent demands forming, thus, groups of services. Statistical tests confirmed ML coupling and made the prediction statistically meaningful and proved that a target service can be matched reliably to other services while ML showed that such marked relationships can also be linear ones. Zero padding was used for missing years records and illustrated better such relationships both for limited years and for the entire span offering long-term data visualizations while limited years periods explained how well patients numbers can be related in short periods of time or that they can change over time as opposed to behaviours across more years. The prediction performance of the associations were measured using metrics such as Receiver Operating Characteristic (ROC), Area Under Curve (AUC) and Accuracy (ACC) as well as the statistical tests Chi-Squared and Student. Co-plots and comparison tables for the RF, CART, and LGR methods as well as the p-value from tests and Information Exchange (IE/MIE) measures are provided showing the relative performance of ML methods and of the statistical tests as well as the behaviour using different learning ratios. The impact of k-neighbours classification (k-NN), Cross-Correlation (CC) and C-Means (CM) first groupings was also studied over limited years and for the entire span. It was found that CART was generally behind RF and LGR but in some interesting cases, LGR reached an AUC = 0 falling below CART, while the ACC was as high as 0.912 showing that ML methods can be confused by zero-padding or by data’s irregularities or by the outliers. On average, 3 linear predictors were sufficient, LGR was found competing well RF and CART followed with the same performance at higher learning ratios. Services were packed only when a significance level (p-value) of their association coefficient was more than 0.05. Social factors relationships were observed between home care services and treatment of old people, low birth weights, alcoholism, drug abuse, and emergency admissions. The work found  that different HSc services can be well packed as plans of limited duration, across various services sectors, learning configurations, as confirmed by using statistical hypotheses.

Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process

The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.

Clustering for Detection of Population Groups at Risk from Anticholinergic Medication

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.

Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.

Effect of Different Types of Highly Consumed Beverages on the Surface Structure of Orthodontic Restorative Material

Orthodontic restorative materials are widely used for the direct restoration of teeth or for cosmetic dentistry purposes. These materials have helped to solve many dental problems, providing healthy and beautiful smiles for many patients. In this study, we aimed to investigate whether the pH value has an effect on the surface structure of a nanohybrid composite material. Five different types of highly consumed beverages were selected to examine their effect on the surface structure of the nanohybrid composite material. The beverages had different pH values in the range of 3–6, i.e., they were all acidic. The material was investigated under the hardest conditions of surface exposure to the drinks by immersing the material for a long period. The specimens were examined using scanning electron microscopy (SEM) at different magnifications to investigate the effect of these beverages on the morphology of the nanohybrid composite material discs. All specimens showed an effect including pores, cracks, protrusions, and surface roughness as a result of the beverages. The degree of effect differed from one experimental group to another, but there was no relationship between the pH (acidity) value and the degree of effect on the surface structure of the specimens.