Analysis of Web User Identification Methods

Web usage mining has become a popular research area, as a huge amount of data is available online. These data can be used for several purposes, such as web personalization, web structure enhancement, web navigation prediction etc. However, the raw log files are not directly usable; they have to be preprocessed in order to transform them into a suitable format for different data mining tasks. One of the key issues in the preprocessing phase is to identify web users. Identifying users based on web log files is not a straightforward problem, thus various methods have been developed. There are several difficulties that have to be overcome, such as client side caching, changing and shared IP addresses and so on. This paper presents three different methods for identifying web users. Two of them are the most commonly used methods in web log mining systems, whereas the third on is our novel approach that uses a complex cookie-based method to identify web users. Furthermore we also take steps towards identifying the individuals behind the impersonal web users. To demonstrate the efficiency of the new method we developed an implementation called Web Activity Tracking (WAT) system that aims at a more precise distinction of web users based on log data. We present some statistical analysis created by the WAT on real data about the behavior of the Hungarian web users and a comprehensive analysis and comparison of the three methods

A Mathematical Representation for Mechanical Model Assessment: Numerical Model Qualification Method

This article illustrates a model selection management approach for virtual prototypes in interactive simulations. In those numerical simulations, the virtual prototype and its environment are modelled as a multiagent system, where every entity (prototype,human, etc.) is modelled as an agent. In particular, virtual prototyp ingagents that provide mathematical models of mechanical behaviour inform of computational methods are considered. This work argues that selection of an appropriate model in a changing environment,supported by models? characteristics, can be managed by the deter-mination a priori of specific exploitation and performance measures of virtual prototype models. As different models exist to represent a single phenomenon, it is not always possible to select the best one under all possible circumstances of the environment. Instead the most appropriate shall be selecting according to the use case. The proposed approach consists in identifying relevant metrics or indicators for each group of models (e.g. entity models, global model), formulate their qualification, analyse the performance, and apply the qualification criteria. Then, a model can be selected based on the performance prediction obtained from its qualification. The authors hope that this approach will not only help to inform engineers and researchers about another approach for selecting virtual prototype models, but also assist virtual prototype engineers in the systematic or automatic model selection.

Analysis of Hollow Rollers Implementation in Flexible Manufacturing of Large Bearings

In this paper is study the possibility of successfully implementing of hollow roller concept in order to minimize inertial mass of the large bearings, with major results in diminution of the material consumption, increasing of power efficiency (in wind power station area), increasing of the durability and life duration of the large bearings systems, noise reduction in working, resistance to vibrations, an important diminution of losses by abrasion and reduction of the working temperature. In this purpose was developed an original solution through which are reduced mass, inertial forces and moments of large bearings by using of hollow rollers. The research was made by using the method of finite element analysis applied on software type Solidworks - Nastran. Also, is study the possibility of rapidly changing the manufacturing system of solid and hollow cylindrical rollers.

The Role of Periodic Vortex Shedding in Heat Transfer Enhancement for Transient Pulsatile Flow Inside Wavy Channels

Periodic vortex shedding in pulsating flow inside wavy channel and the effect it has on heat transfer are studied using the finite volume method. A sinusoidally-varying component is superimposed on a uniform flow inside a sinusoidal wavy channel and the effects on the Nusselt number is analyzed. It was found that a unique optimum value of the pulsation frequency, represented by the Strouhal number, exists for Reynolds numbers ranging from 125 to 1000. Results suggest that the gain in heat transfer is related to the process of vortex formation, movement about the troughs of the wavy channel, and subsequent ejection/destruction through the converging section. Heat transfer is the highest when the frequencies of the pulsation and vortex formation approach being in-phase. Analysis of Strouhal number effect on Nu over a period of pulsation substantiates the proposed physical mechanism for enhancement. The effect of changing the amplitude of pulsation is also presented over a period of pulsation, showing a monotonic increase in heat transfer with increasing amplitude. The 60% increase in Nusselt number suggests that sinusoidal fluid pulsation can an effective method for enhancing heat transfer in laminar, wavy-channel flows.

The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.

An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Western Architecture in Grand Palace, Under Thai Social and Cultural Conditions in the Early Reign of King Chulalongkorn

Chakri Maha Prasart Throne Hall is the important Audience hall in Grand Palace, Bangkok, Thailand which was established in the early reign of King Chulalongkorn (King Rama V) in 1882. The Throne was designed with the distinguished architecture by significant blending of Western and Thai Traditional styles under the Thai Social changing in Colony Era and Thai traditional culture. The western style was represented of modernization and civilization as the other European countries. In the other hand, Thai traditional architecture style with national emblem or Royal emblem was shown the status and power of Thai King as the Thai believes and culture.

A Low-cost Reconfigurable Architecture for AES Algorithm

This paper proposes a low-cost reconfigurable architecture for AES algorithm. The proposed architecture separates SubBytes and MixColumns into two parallel data path, and supports different bit-width operation for this two data path. As a result, different number of S-box can be supported in this architecture. The throughput and power consumption can be adjusted by changing the number of S-box running in this design. Using the TSMC 0.18μm CMOS standard cell library, a very low-cost implementation of 7K Gates is obtained under 182MHz frequency. The maximum throughput is 360Mbps while using 4 S-Box simultaneously, and the minimum throughput is 114Mbps while only using 1 S-Box

Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

A Control Strategy Based on UTT and ISCT for 3P4W UPQC

This paper presents a novel control strategy of a threephase four-wire Unified Power Quality (UPQC) for an improvement in power quality. The UPQC is realized by integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a thee-phase, four leg voltage source inverter (VSI) and the series APF is realized using a three-phase, three leg VSI. A control technique based on unit vector template technique (UTT) is used to get the reference signals for series APF, while instantaneous sequence component theory (ISCT) is used for the control of Shunt APF. The performance of the implemented control algorithm is evaluated in terms of power-factor correction, load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell in a three-phase four-wire distribution system for different combination of linear and non-linear loads. In this proposed control scheme of UPQC, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, there by reducing the computational delay and the required sensors. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC.

Virtual Prototyping and Operational Monitoring of PLC-Based Control System

As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.

Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.

Trends in Competitiveness of the Thai Printing Industry

Since the world printing industry has to confront globalization with a constant change, the Thai printing industry, as a small but increasingly significant part of the world printing industry, cannot inevitably escape but has to encounter with the similar change and also the need to revamp its production processes, designs and technology to make them more appealing to both international and domestic market. The essential question is what is the Thai competitive edge in the printing industry in changing environment? This research is aimed to study the Thai level of competitive edge in terms of marketing, technology, environment friendly, and the level of satisfaction of the process of using printing machines. To access the extent to which is the trends in competitiveness of Thai printing industry, both quantitative and qualitative study were conducted. The quantitative analysis was restricted to 100 respondents. The qualitative analysis was restricted to a focus group of 10 individuals from various backgrounds in the Thai printing industry. The findings from the quantitative analysis revealed that the overall mean scores are 4.53, 4.10, and 3.50 for the competitiveness of marketing, the competitiveness of technology, and the competitiveness of being environment friendly respectively. However, the level of satisfaction for the process of using machines has a mean score only 3.20. The findings from the qualitative analysis have revealed that target customers have increasingly reordered due to their contentment in both low prices and the acceptable quality of the products. Moreover, the Thai printing industry has a tendency to convert to ambient green technology which is friendly to the environment. The Thai printing industry is choosing to produce or substitute with products that are less damaging to the environment. It is also found that the Thai printing industry has been transformed into a very competitive industry which bargaining power rests on consumers who have a variety of choices.