Abstract: Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.
Abstract: A Finite Element (FE) based scheme is presented
for quantifying guided wave interaction with Localised Nonlinear
Structural Damage (LNSD) within structures of arbitrary layering
and geometric complexity. The through-thickness mode-shape of the
structure is obtained through a wave and finite element method. This
is applied in a time domain FE simulation in order to generate
time harmonic excitation for a specific wave mode. Interaction of
the wave with LNSD within the system is computed through an
element activation and deactivation iteration. The scheme is validated
against experimental measurements and a WFE-FE methodology for
calculating wave interaction with damage. Case studies for guided
wave interaction with crack and delamination are presented to verify
the robustness of the proposed method in classifying and identifying
damage.
Abstract: In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.
Abstract: With the rapid development of modern communication,
diagnosing the fiber-optic quality and faults in real-time is widely
focused. In this paper, a Labview-based system is proposed for
fiber-optic faults detection. The wavelet threshold denoising method
combined with Empirical Mode Decomposition (EMD) is applied to
denoise the optical time domain reflectometer (OTDR) signal. Then
the method based on Gabor representation is used to detect events.
Experimental measurements show that signal to noise ratio (SNR)
of the OTDR signal is improved by 1.34dB on average, compared
with using the wavelet threshold denosing method. The proposed
system has a high score in event detection capability and accuracy.
The maximum detectable fiber length of the proposed Labview-based
system can be 65km.
Abstract: Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.
Abstract: This paper presents a two-dimensional model to study the heat and moisture transfer through porous building materials. Dynamic and static coupled models of heat and moisture transfer in porous material under low temperature are presented and the coupled models together with variable initial and boundary conditions have been considered in an analytical way and using the finite element method. The resulting coupled model is converted to two nonlinear partial differential equations, which is then numerically solved by an implicit iterative scheme. The numerical results of temperature and moisture potential changes are compared with the experimental measurements available in the literature. Predicted results demonstrate validation of the theoretical model and effectiveness of the developed numerical algorithms. It is expected to provide useful information for the porous building material design based on heat and moisture transfer model.
Abstract: For a bluff body, roughness elements in simulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake, and lower form drag. In the present work, flow past a circular cylinder with using tripping wires is studied experimentally. The wind tunnel used for modeling free stream is open blow circuit (maximum speed = 30m/s and maximum turbulence of free stream = 0.1%). The selected Reynolds number for all tests was constant (Re = 25000). The circular cylinder selected for this experiment is 20 and 400mm in diameter and length, respectively. The aim of this research is to find the optimal operation mode. In this study installed some tripping wires 1mm in diameter, with a different number of wires on the circular cylinder and the wake characteristics of the circular cylinder is studied. Results showed that by increasing number of tripping wires attached to the circular cylinder (6, 8, and 10, respectively), The optimal angle for the tripping wires with 1mm in diameter to be installed on the cylinder is 60̊ (or 6 wires required at angle difference of 60̊). Strouhal number for the cylinder with tripping wires 1mm in diameter at angular position 60̊ showed the maximum value.
Abstract: In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.
Abstract: Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.
Abstract: Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.
Abstract: Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.
Abstract: The source of the jet noise is generated by rocket exhaust plume during rocket engine testing. A domain decomposition approach is applied to the jet noise prediction in this paper. The aerodynamic noise coupling is based on the splitting into acoustic sources generation and sound propagation in separate physical domains. Large Eddy Simulation (LES) is used to simulate the supersonic jet flow. Based on the simulation results of the flow-fields, the jet noise distribution of the sound pressure level is obtained by applying the Ffowcs Williams-Hawkings (FW-H) acoustics equation and Fourier transform. The calculation results show that the complex structures of expansion waves, compression waves and the turbulent boundary layer could occur due to the strong interaction between the gas jet and the ambient air. In addition, the jet core region, the shock cell and the sound pressure level of the gas jet increase with the nozzle size increasing. Importantly, the numerical simulation results of the far-field sound are in good agreement with the experimental measurements in directivity.
Abstract: Water spray cooling is a technique typically used in
heat treatment and other metallurgical processes where controlled
temperature regimes are required. Water spray cooling is used in
static (without movement) or dynamic (with movement of the steel
plate) regimes. The static regime is notable for the fixed position of
the hot steel plate and fixed spray nozzle. This regime is typical for
quenching systems focused on heat treatment of the steel plate. The
second application of spray cooling is the dynamic regime. The
dynamic regime is notable for its static section cooling system and
moving steel plate. This regime is used in rolling and finishing mills.
The fixed position of cooling sections with nozzles and the
movement of the steel plate produce nonhomogeneous water
distribution on the steel plate. The length of cooling sections and
placement of water nozzles in combination with the nonhomogeneity
of water distribution lead to discontinued or interrupted cooling
conditions. The impact of static and dynamic regimes on cooling
intensity and the heat transfer coefficient during the cooling process
of steel plates is an important issue.
Heat treatment of steel is accompanied by oxide scale growth. The
oxide scale layers can significantly modify the cooling properties and
intensity during the cooling. The combination of static and dynamic
(section) regimes with the variable thickness of the oxide scale layer
on the steel surface impact the final cooling intensity. The study of
the influence of the oxide scale layers with different cooling regimes
was carried out using experimental measurements and numerical
analysis. The experimental measurements compared both types of
cooling regimes and the cooling of scale-free surfaces and oxidized
surfaces. A numerical analysis was prepared to simulate the cooling
process with different conditions of the section and samples with
different oxide scale layers.
Abstract: Monocopter is a single-wing rotary flying vehicle
which has the capability of hovering. This flying vehicle includes two
dynamic parts in which more efficiency can be expected rather than
other Micro UAVs due to the extended area of wing compared to its
fuselage. Low cost and simple mechanism in comparison to other
vehicles such as helicopter are the most important specifications of
this flying vehicle.
In the previous paper we discussed the introduction of the final
system but in this paper, the experimental design process of
Monocopter and its control algorithm has been investigated in
general. Also the editorial bugs in the previous article have been
corrected and some translational ambiguities have been resolved.
Initially by constructing several prototypes and carrying out many
flight tests the main design parameters of this air vehicle were
obtained by experimental measurements. Eventually the required
main monocopter for this project was constructed. After construction
of the monocopter in order to design, implementation and testing of
control algorithms first a simple optic system used for determining
the heading angle. After doing numerous tests on Test Stand, the
control algorithm designed and timing of applying control inputs
adjusted. Then other control parameters of system were tuned in
flight tests. Eventually the final control system designed and
implemented using the AHRS sensor and the final operational tests
performed successfully.
Abstract: This paper presents the variation of the dynamic
characteristics of a spindle with the change of bearing preload. The
correlations between the variation of bearing preload and fundamental
modal parameters were first examined by conducting vibration tests on
physical spindle units. Experimental measurements show that the
dynamic compliance and damping ratio associated with the
dominating modes were affected to vary with variation of the bearing
preload. When the bearing preload was slightly deviated from a
standard value, the modal frequency and damping ability also vary to
different extent, which further enable the spindle to perform with
different compliance. For the spindle used in this study, a standard
preload value set on bearings would enable the spindle to behave a
higher stiffness as compared with others with a preload variation. This
characteristic can be served as a reference to examine the variation of
bearing preload of spindle in assemblage or operation.
Abstract: Vertical slotted walls can be used as permeable
breakwaters to provide economical and environmental protection
from undesirable waves and currents inside the port. The permeable
breakwaters are partially protection and have been suggested to
overcome the environmental disadvantages of fully protection
breakwaters. For regular waves a semi-analytical model is based on
an eigenfunction expansion method and utilizes a boundary condition
at the surface of each wall are developed to detect the energy
dissipation through the slots. Extensive laboratory tests are carried
out to validate the semi-analytic models. The structure of the physical
model contains two walls and it consists of impermeable upper and
lower part, where the draft is based a decimal multiple of the total
depth. The middle part is permeable with a porosity of 50%. The
second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the
water depth from the first one. A comparison of the theoretical results
with previous studies and experimental measurements of the present
study show a good agreement and that, the semi-analytical model is
able to adequately reproduce most the important features of the
experiment.
Abstract: The objective of this work is to use the Fire Dynamics Simulator (FDS) to investigate the behavior of a kerosene small-scale fire. FDS is a Computational Fluid Dynamics (CFD) tool developed specifically for fire applications. Throughout its development, FDS is used for the resolution of practical problems in fire protection engineering. At the same time FDS is used to study fundamental fire dynamics and combustion. Predictions are based on Large Eddy Simulation (LES) with a Smagorinsky turbulence model. LES directly computes the large-scale eddies and the sub-grid scale dissipative processes are modeled. This technique is the default turbulence model which was used in this study. The validation of the numerical prediction is done using a direct comparison of combustion output variables to experimental measurements. Effect of the mesh size on the temperature evolutions is investigated and optimum grid size is suggested. Effect of width openings is investigated. Temperature distribution and species flow are presented for different operating conditions. The effect of the composition of the used fuel on atmospheric pollution is also a focus point within this work. Good predictions are obtained where the size of the computational cells within the fire compartment is less than 1/10th of the characteristic fire diameter.
Abstract: An effort for the detection of damages in the
reinforcement bars of reinforced concrete members using PZTs is
presented. The damage can be the result of excessive elongation of
the steel bar due to steel yielding or due to local steel corrosion. In
both cases the damage is simulated by considering reduced diameter
of the rebar along the damaged part of its length. An integration
approach based on both electromechanical admittance methodology
and guided wave propagation technique is used to evaluate the
artificial damage on the examined longitudinal steel bar. Two
actuator PZTs and a sensor PZT are considered to be bonded on the
examined steel bar. The admittance of the Sensor PZT is calculated
using COMSOL 3.4a. Fast Furrier Transformation for a better
evaluation of the results is employed. An effort for the quantification
of the damage detection using the root mean square deviation
(RMSD) between the healthy condition and damage state of the
sensor PZT is attempted. The numerical value of the RSMD yields a
level for the difference between the healthy and the damaged
admittance computation indicating this way the presence of damage
in the structure. Experimental measurements are also presented.
Abstract: This paper involves a study of the heavy metal pollution of the soils around one of cement plants in Libya called Suk-Alkhameas and surrounding urban areas caused by cement kiln dust (CKD) emitted. Samples of soil was collected from sites at four directions around the cement factory at distances 250m, 1000m, and 3000m from the factory and at (0-10)cm deep in the soil. These samples are analyzed for Fe (iii), Zn(ii), and Pb (ii) as major pollutants. These values are compared with soils at 25 Km distances from the factory as a reference or control samples. The results show that the concentration of Fe ions in the surface soil was within the acceptable range of 1000ppm. However, for Zn and Pb ions the concentrations at the east and north sides of the factory were found six fold higher than the benchmark level. This high value was attributed to the wind which blows usually from south to north and from west to east. This work includes an investigation of the adsorption isotherms and adsorption efficiency of CKD as adsorbent of heavy metal ions (Fe (iii), Zn(ii), and Pb(ii)) from the polluted soils of Suk-Alkameas city. The investigation was conducted in batch and fixed bed column flow technique. The adsorption efficiency of the studied heavy metals ions removals onto CKD depends on the pH of the solution. The optimum pH values are found to be in the ranges of 8-10 and decreases at lower pH values. The removal efficiency of these heavy metals ions ranged from 93% for Pb, 94% for Zn, and 98% for Fe ions for 10 g.l-1 adsorbent concentration. The maximum removal efficiency of these ions was achieved at 50-60 minutes contact times at which equilibrium is reached. Fixed bed column experimental measurements are also made to evaluate CKD as an adsorbent for the heavy metals. Results obtained are with good agreement with Langmuir and Drachsal assumption of multilayer formation on the adsorbent surface.
Abstract: Gait disturbance, particularly freezing of gait (FOG), is a phenomenon that is common in Parkinson’s patients and significantly contributes to a loss of function and independence. Walking performance and number of freezing episodes have been known to respond favorably to sensory cues of different modalities. However, a topic that has so far barely been touched is how to resolve freezing episodes via sensory cues once they have appeared. In this study, we analyze the effect of five different sensory cues on the duration of freezing episodes: (1) vibratory alert, (2) auditory alert, (3) vibratory rhythm, (4) auditory rhythm, (5) visual cue in form of parallel lines projected to the floor. The motivation for this study is to investigate the possibility of the design of a gait assistive device for Parkinson’s patients. Test subjects were 7 Parkinson’s patients regularly suffering from FOG. The patients had to repeatedly walk a pre-defined course and cues were triggered always 2 s after freezing onset. The effect was analyzed via experimental measurements and patient interviews. The measurements showed that all 5 sensory cues led to a decrease of the average duration of freezing: baseline (7.9s), vibratory alert (7.1s), auditory alert (6.7s), auditory rhythm (6.4s), vibratory rhythm (6.3s), and visual cue (5.3s). Nevertheless, interestingly, patients subjectively evaluated the audio alert and vibratory signals to have a significantly better effect for reducing their freezing duration than the visual cue.