Abstract: We proposed a technique to identify road traffic
congestion levels from velocity of mobile sensors with high accuracy
and consistent with motorists- judgments. The data collection utilized
a GPS device, a webcam, and an opinion survey. Human perceptions
were used to rate the traffic congestion levels into three levels: light,
heavy, and jam. Then the ratings and velocity were fed into a
decision tree learning model (J48). We successfully extracted vehicle
movement patterns to feed into the learning model using a sliding
windows technique. The parameters capturing the vehicle moving
patterns and the windows size were heuristically optimized. The
model achieved accuracy as high as 99.68%. By implementing the
model on the existing traffic report systems, the reports will cover
comprehensive areas. The proposed method can be applied to any
parts of the world.