Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Modeling of Compaction Curves for Corn Cob Ash-Cement Stabilized Lateritic Soils

The need to save time and cost of soil testing at the planning stage of road work has necessitated developing predictive models. This study proposes a model for predicting the dry density of lateritic soils stabilized with corn cob ash (CCA) and blended cement - CCA. Lateritic soil was first stabilized with CCA at 1.5, 3.0, 4.5 and 6% of the weight of soil and then stabilized with the same proportions as replacement for cement. Dry density, specific gravity, maximum degree of saturation and moisture content were determined for each stabilized soil specimen, following standard procedure. Polynomial equations containing alpha and beta parameters for CCA and blended CCA-cement were developed. Experimental values were correlated with the values predicted from the Matlab curve fitting tool, and the Solver function of Microsoft Excel 2010. The correlation coefficient (R2) of 0.86 was obtained indicating that the model could be accepted in predicting the maximum dry density of CCA stabilized soils to facilitate quick decision making in roadworks.