All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems

In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio.

Monitoring and Prediction of Intra-Crosstalk in All-Optical Network

Optical performance monitoring and optical network management are essential in building a reliable, high-capacity, and service-differentiation enabled all-optical network. One of the serious problems in this network is the fact that optical crosstalk is additive, and thus the aggregate effect of crosstalk over a whole AON may be more nefarious than a single point of crosstalk. As results, we note a huge degradation of the Quality of Service (QoS) in our network. For that, it is necessary to identify and monitor the impairments in whole network. In this way, this paper presents new system to identify and monitor crosstalk in AONs in real-time fashion. particular, it proposes a new technique to manage intra-crosstalk in objective to relax QoS of the network.

Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks

Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.

Multicasting Characteristics of All-Optical Triode Based On Negative Feedback Semiconductor Optical Amplifiers

We introduced an all-optical multicasting characteristics with wavelength conversion based on a novel all-optical triode using negative feedback semiconductor optical amplifier. This study was demonstrated with a transfer speed of 10 Gb/s to a non-return zero 231-1 pseudorandom bit sequence system. This multi-wavelength converter device can simultaneously provide three channels of output signal with the support of non-inverted and inverted conversion. We studied that an all-optical multicasting and wavelength conversion accomplishing cross gain modulation is effective in a semiconductor optical amplifier which is effective to provide an inverted conversion thus negative feedback. The relationship of received power of back to back signal and output signals with wavelength 1535 nm, 1540 nm, 1545 nm, 1550 nm, and 1555 nm with bit error rate was investigated. It was reported that the output signal wavelengths were successfully converted and modulated with a power penalty of less than 8.7 dB, which the highest is 8.6 dB while the lowest is 4.4 dB. It was proved that all-optical multicasting and wavelength conversion using an optical triode with a negative feedback by three channels at the same time at a speed of 10 Gb/s is a promising device for the new wavelength conversion technology.

A Novel Single-Wavelength All-Optical Flip-Flop Employing Single SOA-MZI

In this paper, by exploiting a single semiconductor optical amplifier-Mach Zehnder Interferometer (SOA-MZI), an integratable all-optical flip-flop (AOFF) is proposed. It is composed of a SOA-MZI with a bidirectional coupler at the output. Output signals of both bar and crossbar of the SOA-MZI is fed back to SOAs located in the arms of the Mach-Zehnder Interferometer (MZI). The injected photon-rates to the SOAs are modulated by feedback signals in order to form optical flip-flop. According to numerical analysis, Gaussian optical pulses with the energy of 15.2 fJ and 20 ps duration with the full width at half-maximum criterion, can switch the states of the SR-AOFF. Also simulation results show that the SR-AOFF has the contrast ratio of 8.5 dB between two states with the transition time of nearly 20 ps.

XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching

In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.

Numerical Analysis of All-Optical Microwave Mixing and Bandpass Filtering in an RoF Link

In this paper, all-optical signal processors that perform both microwave mixing and bandpass filtering in a radio-over-fiber (RoF) link are presented. The key device is a Mach-Zehnder modulator (MZM) which performs all-optical microwave mixing. An up-converted microwave signal is obtained and other unwanted frequency components are suppressed at the end of the fiber span.