Generalized π-Armendariz Authentication Cryptosystem

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

On Algebraic Structure of Improved Gauss-Seidel Iteration

Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.

Block Cipher Based on Randomly Generated Quasigroups

Quasigroups are algebraic structures closely related to Latin squares which have many different applications. The construction of block cipher is based on quasigroup string transformation. This article describes a block cipher based Quasigroup of order 256, suitable for fast software encryption of messages written down in universal ASCII code. The novelty of this cipher lies on the fact that every time the cipher is invoked a new set of two randomly generated quasigroups are used which in turn is used to create a pair of quasigroup of dual operations. The cryptographic strength of the block cipher is examined by calculation of the xor-distribution tables. In this approach some algebraic operations allows quasigroups of huge order to be used without any requisite to be stored.

Equalities in a Variety of Multiple Algebras

The purpose of this research is to study the concepts of multiple Cartesian product, variety of multiple algebras and to present some examples. In the theory of multiple algebras, like other theories, deriving new things and concepts from the things and concepts available in the context is important. For example, the first were obtained from the quotient of a group modulo the equivalence relation defined by a subgroup of it. Gratzer showed that every multiple algebra can be obtained from the quotient of a universal algebra modulo a given equivalence relation. The purpose of this study is examination of multiple algebras and basic relations defined on them as well as introduction to some algebraic structures derived from multiple algebras. Among the structures obtained from multiple algebras, this article studies submultiple algebras, quotients of multiple algebras and the Cartesian product of multiple algebras.

Assessing the Relation between Theory of Multiple Algebras and Universal Algebras

In this study, we examine multiple algebras and algebraic structures derived from them and by stating a theory on multiple algebras; we will show that the theory of multiple algebras is a natural extension of the theory of universal algebras. Also, we will treat equivalence relations on multiple algebras, for which the quotient constructed modulo them is a universal algebra and will study the basic relation and the fundamental algebra in question. In this study, by stating the characteristic theorem of multiple algebras, we show that the theory of multiple algebras is a natural extension of the theory of universal algebras.

Algebraic Quantum Error Correction Codes

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of quantum codes are classified according to the relation of the codeword operators and some initial quantum state. By linking the unitary Lie algebra with the additive group, the classical correspondences of some of these quantum codes can be rendered.