Parametric Studies of Ethylene Dichloride Purification Process

Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease.

Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modeling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Undecimated Wavelet Transform Based Contrast Enhancement

A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround  enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.

One-DOF Precision Position Control using the Combined Piezo-VCM Actuator

This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.