Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins

The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.

Nonlinear Slow Shear Alfven Waves in Electron- Positron-Ion Plasma Including Full Ion Dynamics

Propagation of arbitrary amplitude nonlinear Alfven waves has been investigated in low but finite β electron-positron-ion plasma including full ion dynamics. Using Sagdeev pseudopotential method an energy integral equation has been derived. The Sagdeev potential has been calculated for different plasma parameters and it has been shown that inclusion of ion parallel motion along the magnetic field changes the nature of slow shear Alfven wave solitons from dip type to hump type. The effects of positron concentration, plasma-β and obliqueness of the wave propagation on the solitary wave structure have also been examined.

Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Arbitrary Amplitude Ion-Acoustic Solitary Waves in Electron-Ion-Positron Plasma with Nonthermal Electrons

Using pseudo potential method arbitrary amplitude ion-acoustic solitary waves have been theoretically studied in a collisionless plasma consisting of warm drifting positive ions, Boltzmann positrons and nonthermal electrons. Ion-acoustic solitary wave solutions have been obtained and the dependence of the solitary wave profile on different plasma parameters has been studied numerically. Lower and higher order compressive and rarefactive solitary waves are observed in presence of positrons, nonthermal electrons, ion drift velocity and finite ion temperature. Inclusion of higher order nonlinearity is shown to have significant correction to the solitary wave profile for the same values of plasma parameters.