From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Lightweight and Seamless Distributed Scheme for the Smart Home

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Assessment of Multiscale Information for Short Physiological Time Series

This paper presents a multiscale information measure of Electroencephalogram (EEG) for analysis with a short data length. A multiscale extension of permutation entropy (MPE) is capable of fully reflecting the dynamical characteristics of EEG across different temporal scales. However, MPE yields an imprecise estimation due to coarse-grained procedure at large scales. We present an improved MPE measure to estimate entropy more accurately with a short time series. By computing entropies of all coarse-grained time series and averaging those at each scale, it leads to the modified MPE (MMPE) which provides an enhanced accuracy as compared to MPE. Simulation and experimental studies confirmed that MMPE has proved its capability over MPE in terms of accuracy.

Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may damage ToM by affecting on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks, (1) each patient group performed worse than HC; (2) there were no significant differences between LTLE and RTLE groups; and (3) the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Ultrasonographic Manifestations of Periventricular Leukomalacia in Preterm Neonates at Teaching Hospital Peradeniya, Sri Lanka

Periventricular Leukomalacia (PVL) is a White Matter Injury (WMI) of preterm neonatal brain. Objectives of the study were to assess the neuro-developmental outcome at one year of age and to determine a good protocol of cranial ultrasonography to detect PVL. Two hundred and sixty four preterm neonates were included in the study. Series of cranial ultrasound scans were done by using a dedicated neonatal head probe 4-10 MHz of Logic e portable ultrasound scanner. Clinical history of seizures, abnormal head growth (hydrocephalus or microcephaly) and developmental milestones were assessed and neurological examinations were done until one year of age. Among live neonates, 57% who had cystic PVL (Grades 2 and 3) manifested as cerebral palsy. In conclusion cystic PVL has permanent neurological disabilities like cerebral palsy. Good protocol of real time cranial ultrasonography to detect PVL is to perform scans at least once a week until one month and at term (40 weeks of gestation).

A Novel Method for the Characterization of Synchronization and Coupling in Multichannel EEG and ECoG

In this paper we introduce a novel method for the characterization of synchronziation and coupling effects in multivariate time series that can be used for the analysis of EEG or ECoG signals recorded during epileptic seizures. The method allows to visualize the spatio-temporal evolution of synchronization and coupling effects that are characteristic for epileptic seizures. Similar to other methods proposed for this purpose our method is based on a regression analysis. However, a more general definition of the regression together with an effective channel selection procedure allows to use the method even for time series that are highly correlated, which is commonly the case in EEG/ECoG recordings with large numbers of electrodes. The method was experimentally tested on ECoG recordings of epileptic seizures from patients with temporal lobe epilepsies. A comparision with the results from a independent visual inspection by clinical experts showed an excellent agreement with the patterns obtained with the proposed method.

Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Ethics in the Technology Driven Enterprise

Innovations in technology have created new ethical challenges. Essential use of electronic communication in the workplace has escalated at an astronomical rate over the past decade. As such, legal and ethical dilemmas confronted by both the employer and the employee concerning managerial control and ownership of einformation have increased dramatically in the USA. From the employer-s perspective, ownership and control of all information created for the workplace is an undeniable source of economic advantage and must be monitored zealously. From the perspective of the employee, individual rights, such as privacy, freedom of speech, and freedom from unreasonable search and seizure, continue to be stalwart legal guarantees that employers are not legally or ethically entitled to abridge in the workplace. These issues have been the source of great debate and the catalyst for legal reform. The fine line between ethical and legal has been complicated by emerging technologies. This manuscript will identify and discuss a number of specific legal and ethical issues raised by the dynamic electronic workplace and conclude with suggestions that employers should follow to respect the delicate balance between employees- legal rights to privacy and the employer's right to protect its knowledge systems and infrastructure.

Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Recent Outbreaks of Highly Pathogenic Avian Influenza Virus in Chickens and Ducks in Egypt: Pathological Study

Clinically, chickens showed progressively developed clinical signs represented by sever cyanosis of the comb and wattles with hemorrhage at the shanks, depression, and ruffling feathers with loss of appetite and high daily mortalities. The ducks showed severe neurological signs as torticollus, seizures and inability to stand with mild signs of diarrhea and depression. Grossly, chickens showed hemorrhages and congestion in most of the organs particularly lung, liver, spleen, trachea and kidney. The examined ducks showed multiple petechial hemorrhages, multifocal hemorrhagic necrosis in the pancreas, pulmonary edema, congestion and hemorrhage in meninges and congestion in the skeletal muscles. Histopathology revealed severe congestion and hemorrhages in most of the organs particularly lung, liver and kidney. Microscopic erosive tracheitis, sever pulmonary congestion and perivascular oedema and lymphogranulocytic pneumonia were constant. The liver showed hepatocyts necrosis and lympho-granulocytic infiltration. The kidney showed renal tubular necrosis and diffuse congestion. Multifocal, neuronal necrosis, hemorrhages, multifocal glial nodules, lympho- histiocytic perivascular cuffing, and occasional neuronophagia were observed in the cerebrum. Other organs showed moderate changes.

Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.