Torsion Behavior of Steel Fibered High Strength Self Compacting Concrete Beams Reinforced by GFRB Bars

This paper investigates experimentally and analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Steel fibered high strength self compacting concrete (SFHSSCC) and GFRP bars became in the recent decades a very important materials in the structural engineering field. The use of GFRP bars to replace steel bars has emerged as one of the many techniques put forward to enhance the corrosion resistance of reinforced concrete structures. High strength concrete and GFRP bars attract designers and architects as it allows improving the durability as well as the esthetics of a construction. One of the trends in SFHSSCC structures is to provide their ductile behavior and additional goal is to limit development and propagation of macro-cracks in the body of SFHSSCC elements. SFHSSCC and GFRP bars are tough, improve the workability, enhance the corrosion resistance of reinforced concrete structures, and demonstrate high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents. Three types of volume fraction from hooked shape steel fibers are used in this study, the hooked steel fibers were evaluated in volume fractions ranging between 0.0%, 0.75% and 1.5%. The beams shape is chosen to create the required forces (i.e. torsion and bending moments simultaneously) on the test zone. A total of seven beams were tested, classified into three groups. All beams, have 200cm length, cross section of 10×20cm, longitudinal bottom reinforcement of 3

A Study on Crashworhiness Assessment and Improvement of Tilting Train Made of Sandwich Composites

This paper describes the crashworthiness assessment and improvement of tlting train made of sandwich composites. The crashworhiness assessment of tilting train was conducted according to four collision scenarios of the Korean railway safety law. Collision analysis was carried out using explicit finite element analysis code LS-DYNA 3D. The finite element model consists of 3-D finite element model and 1-D equivalent model to save the finite element modeling and calculation time. It found that the crashworthiness analysis results were satisfied with the performance requirements except the crash scenario-2. In order to meet the crashworthiness requirements for crash scenario-2, the stiffness reinforcement for the laminate composite cover and metal frames of cabmask structure were proposed. Consequentially, it has satisfied the requirement for crash scenario-2.

Numerical Study of Cyclic Behavior of Shallow Foundations on Sand Reinforced with Geogrid and Grid-Anchor

When the foundations of structures under cyclic loading with amplitudes less than their permissible load, the concern exists often for the amount of uniform and non-uniform settlement of such structures. Storage tank foundations with numerous filling and discharging and railways ballast course under repeating transportation loads are examples of such conditions. This paper deals with the effects of using the new generation of reinforcements, Grid-Anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of different proportions of the ultimate load. Other items such as the type and the number of reinforcements as well as the number of loading cycles are studied numerically. Numerical models were made using the Plaxis3D Tunnel finite element code. The results show that by using gridanchor and increasing the number of their layers in the same proportion as that of the cyclic load being applied, the amount of permanent settlement decreases up to 42% relative to unreinforced condition depends on the number of reinforcement layers and percent of applied load and the number of loading cycles to reach a constant value of dimensionless settlement decreases up to 20% relative to unreinforced condition.

Mechanical Properties of Ultra High Performance Concrete

A research program is conducted to evaluate the mechanical properties of Ultra High Performance Concrete, target compressive strength at the age of 28 days being more than 150 MPa. The methodology to develop such mix has been explained. The material properties, mix design and curing regime are determined. The material attributes are understood by studying the stress strain behaviour of UHPC cylinders under uniaxial compressive loading. The load –crack mouth opening displacement (cmod) of UHPC beams, flexural strength and fracture energy was evaluated using third point loading test. Compressive strength and Split tensile strength results are determined to find out the compressive and tensile behaviour. Residual strength parameters are presented vividly explaining the flexural performance, toughness of concrete.Durability studies were also done to compare the effect of fibre to that of a control mix For all the studies the Mechanical properties were evaluated by varying the percentage and aspect ratio of steel fibres The results reflected that higher aspect ratio and fibre volume produced drastic changes in the cube strength, cylinder strength, post peak response, load-cmod, fracture energy flexural strength, split tensile strength, residual strength and durability. In regards to null application of UHPC in India, an initiative is undertaken to comprehend the mechanical behaviour of UHPC, which will be vital for longer run in commercialization for structural applications.