On the Use of Correlated Binary Model in Social Network Analysis

In social network analysis the mean nodal degree and density of the graph can be considered as a measure of the activity of all actors in the network and this is an important property of a graph and for making comparisons among networks. Since subjects in a family or organization are subject to common environment factors, it is prime interest to study the association between responses. Therefore, we study the distribution of the mean nodal degree and density of the graph under correlated binary units. The cross product ratio is used to capture the intra-units association among subjects. Computer program and an application are given to show the benefits of the method.

Using Non-Linear Programming Techniques in Determination of the Most Probable Slip Surface in 3D Slopes

Among many different methods that are used for optimizing different engineering problems mathematical (numerical) optimization techniques are very important because they can easily be used and are consistent with most of engineering problems. Many studies and researches are done on stability analysis of three dimensional (3D) slopes and the relating probable slip surfaces and determination of factors of safety, but in most of them force equilibrium equations, as in simplified 2D methods, are considered only in two directions. In other words for decreasing mathematical calculations and also for simplifying purposes the force equilibrium equation in 3rd direction is omitted. This point is considered in just a few numbers of previous studies and most of them have only given a factor of safety and they haven-t made enough effort to find the most probable slip surface. In this study shapes of the slip surfaces are modeled, and safety factors are calculated considering the force equilibrium equations in all three directions, and also the moment equilibrium equation is satisfied in the slip direction, and using nonlinear programming techniques the shape of the most probable slip surface is determined. The model which is used in this study is a 3D model that is composed of three upper surfaces which can cover all defined and probable slip surfaces. In this research the meshing process is done in a way that all elements are prismatic with quadrilateral cross sections, and the safety factor is defined on this quadrilateral surface in the base of the element which is a part of the whole slip surface. The method that is used in this study to find the most probable slip surface is the non-linear programming method in which the objective function that must get optimized is the factor of safety that is a function of the soil properties and the coordinates of the nodes on the probable slip surface. The main reason for using non-linear programming method in this research is its quick convergence to the desired responses. The final results show a good compatibility with the previously used classical and 2D methods and also show a reasonable convergence speed.

Noise Depressed in a Micro Stepping Motor

An investigation of noise in a micro stepping motor is considered to study in this article. Because of the trend towards higher precision and more and more small 3C (including Computer, Communication and Consumer Electronics) products, the micro stepping motor is frequently used to drive the micro system or the other 3C products. Unfortunately, noise in a micro stepped motor is too large to accept by the customs. To depress the noise of a micro stepped motor, the dynamic characteristics in this system must be studied. In this article, a Visual Basic (VB) computer program speed controlled micro stepped motor in a digital camera is investigated. Karman KD2300-2S non-contract eddy current displacement sensor, probe microphone, and HP 35670A analyzer are employed to analyze the dynamic characteristics of vibration and noise in a motor. The vibration and noise measurement of different type of bearings and different treatment of coils are compared. The rotating components, bearings, coil, etc. of the motor play the important roles in producing vibration and noise. It is found that the noise will be depressed about 3~4 dB and 6~7 dB, when substitutes the copper bearing with plastic one and coats the motor coil with paraffin wax, respectively.

An AHP-Delphi Multi-Criteria Usage Cases Model with Application to Citrogypsum Decisions, Case Study: Kimia Gharb Gostar Industries Company

Today, advantage of biotechnology especially in environmental issues compared to other technologies is irrefragable. Kimia Gharb Gostar Industries Company, as a largest producer of citric acid in Middle East, applies biotechnology for this goal. Citrogypsum is a by–product of citric acid production and it considered as a valid residuum of this company. At this paper summary of acid citric production and condition of Citrogypsum production in company were introduced in addition to defmition of Citrogypsum production and its applications in world. According to these information and evaluation of present conditions about Iran needing to Citrogypsum, the best priority was introduced and emphasized on strategy selection and proper programming for self-sufficiency. The Delphi technique was used to elicit expert opinions about criteria for evaluating the usages. The criteria identified by the experts were profitability, capacity of production, the degree of investment, marketable, production ease and time production. The Analytical Hierarchy Process (ARP) and Expert Choice software were used to compare the alternatives on the criteria derived from the Delphi process.

Assessment of Reliability and Quality Measures in Power Systems

The paper presents new results of a recent industry supported research and development study in which an efficient framework for evaluating practical and meaningful power system reliability and quality indices was applied. The system-wide integrated performance indices are capable of addressing and revealing areas of deficiencies and bottlenecks as well as redundancies in the composite generation-transmission-demand structure of large-scale power grids. The technique utilizes a linear programming formulation, which simulates practical operating actions and offers a general and comprehensive framework to assess the harmony and compatibility of generation, transmission and demand in a power system. Practical applications to a reduced system model as well as a portion of the Saudi power grid are also presented in the paper for demonstration purposes.

Controller Synthesis of Switched Positive Systems with Bounded Time-Varying Delays

This paper addresses the controller synthesis problem of discrete-time switched positive systems with bounded time-varying delays. Based on the switched copositive Lyapunov function approach, some necessary and sufficient conditions for the existence of state-feedback controller are presented as a set of linear programming and linear matrix inequality problems, hence easy to be verified. Another advantage is that the state-feedback law is independent on time-varying delays and initial conditions. A numerical example is provided to illustrate the effectiveness and feasibility of the developed controller.

The Features of Organizing a Master Preparation in Kazakhstan

In this article has been analyzed Kazakhstani experience in organizing the system after the institute of higher education, legislative-regulative assurance of master preparation, and statistic data in the republic. Have been the features of projecting the master programs, a condition of realization of studying credit system, have been analyzed the technologies of research teaching masters. In conclusion have been given some recommendation on creating personal-oriented environment of research teaching masters.

Solving the Teacher Assignment-Course Scheduling Problem by a Hybrid Algorithm

This paper presents a hybrid algorithm for solving a timetabling problem, which is commonly encountered in many universities. The problem combines both teacher assignment and course scheduling problems simultaneously, and is presented as a mathematical programming model. However, this problem becomes intractable and it is unlikely that a proven optimal solution can be obtained by an integer programming approach, especially for large problem instances. A hybrid algorithm that combines an integer programming approach, a greedy heuristic and a modified simulated annealing algorithm collaboratively is proposed to solve the problem. Several randomly generated data sets of sizes comparable to that of an institution in Indonesia are solved using the proposed algorithm. Computational results indicate that the algorithm can overcome difficulties of large problem sizes encountered in previous related works.

4D Flight Trajectory Optimization Based on Pseudospectral Methods

The optimization and control problem for 4D trajectories is a subject rarely addressed in literature. In the 4D navigation problem we define waypoints, for each mission, where the arrival time is specified in each of them. One way to design trajectories for achieving this kind of mission is to use the trajectory optimization concepts. To solve a trajectory optimization problem we can use the indirect or direct methods. The indirect methods are based on maximum principle of Pontryagin, on the other hand, in the direct methods it is necessary to transform into a nonlinear programming problem. We propose an approach based on direct methods with a pseudospectral integration scheme built on Chebyshev polynomials.

Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.

A Support System Applicable to Multiple APIs for Haptic VR Application Designers

This paper describes a proposed support system which enables applications designers to effectively create VR applications using multiple haptic APIs. When the VR designers create applications, it is often difficult to handle and understand many parameters and functions that have to be set in the application program using documentation manuals only. This complication may disrupt creative imagination and result in inefficient coding. So, we proposed the support application which improved the efficiency of VR applications development and provided the interactive components of confirmation of operations with haptic sense previously. In this paper, we describe improvements of our former proposed support application, which was applicable to multiple APIs and haptic devices, and evaluate the new application by having participants complete VR program. Results from a preliminary experiment suggest that our application facilitates creation of VR applications.

Providing Medical Information in Braille: Research and Development of Automatic Braille Translation Program for Japanese “eBraille“

Along with the advances in medicine, providing medical information to individual patient is becoming more important. In Japan such information via Braille is hardly provided to blind and partially sighted people. Thus we are researching and developing a Web-based automatic translation program “eBraille" to translate Japanese text into Japanese Braille. First we analyzed the Japanese transcription rules to implement them on our program. We then added medical words to the dictionary of the program to improve its translation accuracy for medical text. Finally we examined the efficacy of statistical learning models (SLMs) for further increase of word segmentation accuracy in braille translation. As a result, eBraille had the highest translation accuracy in the comparison with other translation programs, improved the accuracy for medical text and is utilized to make hospital brochures in braille for outpatients and inpatients.

On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Reliability Optimization for 3G Cellular Access Networks

This paper address the network reliability optimization problem in the optical access network design for the 3G cellular systems. We presents a novel 0-1 integer programming model for designing optical access network topologies comprised of multi-rings with common-edge in order to guarantee always-on services. The results show that the proposed model yields access network topologies with the optimal reliablity and satisfies both network cost limitations and traffic demand requirements.

A New Integer Programming Formulation for the Chinese Postman Problem with Time Dependent Travel Times

The Chinese Postman Problem (CPP) is one of the classical problems in graph theory and is applicable in a wide range of fields. With the rapid development of hybrid systems and model based testing, Chinese Postman Problem with Time Dependent Travel Times (CPPTDT) becomes more realistic than the classical problems. In the literature, we have proposed the first integer programming formulation for the CPPTDT problem, namely, circuit formulation, based on which some polyhedral results are investigated and a cutting plane algorithm is also designed. However, there exists a main drawback: the circuit formulation is only available for solving the special instances with all circuits passing through the origin. Therefore, this paper proposes a new integer programming formulation for solving all the general instances of CPPTDT. Moreover, the size of the circuit formulation is too large, which is reduced dramatically here. Thus, it is possible to design more efficient algorithm for solving the CPPTDT in the future research.

A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs

Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.

Scheduling a Project to Minimize Costs of Material Requirements

Traditionally, project scheduling and material planning have been treated independently. In this research, a mixed integer programming model is presented to integrate project scheduling and materials ordering problems. The goal is to minimize the total material holding and ordering costs. In addition, an efficient metaheuristic algorithm is proposed to solve the model. The proposed algorithm is computationally tested, the results are analyzed, and conclusions are given.

A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System

This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.

Robot Path Planning in 3D Space Using Binary Integer Programming

This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.

Markov Game Controller Design Algorithms

Markov games are a generalization of Markov decision process to a multi-agent setting. Two-player zero-sum Markov game framework offers an effective platform for designing robust controllers. This paper presents two novel controller design algorithms that use ideas from game-theory literature to produce reliable controllers that are able to maintain performance in presence of noise and parameter variations. A more widely used approach for controller design is the H∞ optimal control, which suffers from high computational demand and at times, may be infeasible. Our approach generates an optimal control policy for the agent (controller) via a simple Linear Program enabling the controller to learn about the unknown environment. The controller is facing an unknown environment, and in our formulation this environment corresponds to the behavior rules of the noise modeled as the opponent. Proposed controller architectures attempt to improve controller reliability by a gradual mixing of algorithmic approaches drawn from the game theory literature and the Minimax-Q Markov game solution approach, in a reinforcement-learning framework. We test the proposed algorithms on a simulated Inverted Pendulum Swing-up task and compare its performance against standard Q learning.