Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder

The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.

Service Blueprint for Improving Clinical Guideline Adherence via Mobile Health Technology

Background: To improve the delivery of paediatric healthcare in low resource settings, Community Health Workers (CHW) have been provided with a paper-based set of protocols known as Community Case Management (CCM). Yet research has shown that CHW adherence to CCM guidelines is poor, ultimately impacting health service delivery. Digitising the CCM guidelines via mobile technology is argued in extant literature to improve CHW adherence. However, little research exist which outlines how (a) this process can be digitised and (b) adherence could be improved as a result. Aim: To explore how an electronic mobile version of CCM (eCCM) can overcome issues associated with the paper-based CCM protocol (inadequate adherence to guidelines) vis-à-vis service blueprinting. This service blueprint will outline how (a) the CCM process can be digitised using mobile Clinical Decision Support Systems software to support clinical decision-making and (b) adherence can be improved as a result. Method: Development of a single service blueprint for a standalone application which visually depicts the service processes (eCCM) when supporting the CHWs, using an application known as Supporting LIFE (SL eCCM app) as an exemplar. Results: A service blueprint is developed which illustrates how the SL eCCM app can be utilised by CHWs to assist with the delivery of healthcare services to children. Leveraging smartphone technologies can (a) provide CHWs with just-in-time data to assist with their decision making at the point-of-care and (b) improve CHW adherence to CCM guidelines. Conclusions: The development of the eCCM opens up opportunities for the CHWs to leverage the inherent benefit of mobile devices to assist them with health service delivery in rural settings. To ensure that benefits are achieved, it is imperative to comprehend the functionality and form of the eCCM service process. By creating such a service blueprint for an eCCM approach, CHWs are provided with a clear picture regarding the role of the eCCM solution, often resulting in buy-in from the end-users.

A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Pyrazinamide (PZA) is among the first-line pro-drugs  in the tuberculosis (TB) combination chemotherapy used to treat  Mycobacterium tuberculosis. Numerous reports have suggested that  hepatotoxicity due to pyrazinamide in patients is due to inappropriate  dosing. It is, therefore necessary to develop sensitive and reliable  techniques for determining the PZA metabolic profile of diagnosed  patients promptly and at point-of-care. This study reports the  determination of PZA based on nanobiosensor systems developed  from disuccinimidyl octanedioate modified Cytochrome P450-2E1  (CYP2E1) electrodeposited on gold substrates derivatised with  (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs  nanocomposites. The rapid and sensitive amperometric PZA  detection gave a dynamic linear range of 2µM to 16µM revealing a  limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The  Michaelis-Menten parameters; KM, KM app and IMAX were calculated to  be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a  nanobiosensor suitable for use in serum.

Colorectal Cancer Screening by a CEACAM-6 Immunosensor

The biomarker for colorectal cancer (CRC) is CEACAM-6 antigen (C6AG). Therefore, this study aims to develop a novel, simple and low-cost CEACAM-6 antigen immumosensor (C6AG-IMS), based on electrical impedance measurement, for precise determination of C6AG. A low-cost screen-printed graphite electrode was constructed and used as the sensor, with CEACAM-6 antibody (C6AB) immobilized on it. The procedures of sensor fabrication and antibody immobilization are simple and low-cost. Measurement of the electrical impedance at a definite frequency ranges (0.43 – 1.26 MHz) showed that the C6AG-IMS has an excellent linear (r2>0.9) response range (8.125 – 65 pg/mL), covering the normal physiological and pathological ranges of blood C6AG levels. Also, the C6AG-IMS has excellent reliability and validity, with the intraclass correlation coefficient being 0.97. In conclusion, a novel, simple, low-cost and reliable C6AG-IMS was designed and developed, being able to accurately determine blood C6AG levels in the range of pathological and normal physiological regions. The C6AG-IMS can provide a point-of-care and immediate screening results to the user at home.