The Analysis of Photoconductive Semiconductor Switch Operation in the Frequency of 10 GHz

A device analysis of the photoconductive semiconductor switch is carried out to investigate distribution of electric field and carrier concentrations as well as the current density distribution. The operation of this device was then investigated as a switch operating in X band. It is shown that despite the presence of symmetry geometry, switch current density of the on-state steady state mode is distributed asymmetrically throughout the device.

Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array

Post growth annealing of solution grown ZnO nanowire array is performed under controlled oxygen ambience. The role of annealing over surface defects and their consequence on dark/photo-conductivity and photosensitivity of nanowire array is investigated. Surface defect properties are explored using various measurement tools such as contact angle, photoluminescence, Raman spectroscopy and XPS measurements. The contact angle of the NW films reduces due to oxygen annealing and nanowire film surface changes from hydrophobic (96°) to hydrophilic (16°). Raman and XPS spectroscopy reveal that oxygen annealing improves the crystal quality of the nanowire films. The defect band emission intensity (relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after annealing at 600 °C at 10 SCCM flow of oxygen. An order enhancement in dark conductivity is observed in O2 annealed samples, while photoconductivity is found to be slightly reduced due to lower concentration of surface related oxygen defects.