Teaching Science Content Area Literacy to 21st Century Learners

The use of new literacies within science classrooms needs to be balanced by teachers to both teach different forms of communication while assessing content area proficiency. Using new literacies such as Twitter and Facebook needs to be incorporated into science content area literacy studies in addition to continuing to use generally-accepted forms of scientific content area presentation which include scientific papers and textbooks. The research question this literature review seeks to answer is “What are some ways in which new forms of literacy are better suited to teach scientific content area literacy to 21st century learners?” The research question is addressed through a literature review that highlights methods currently being used to educate the next wave of learners in the world of science content area literacy. Both temporal discourse analysis (TDA) and critical discourse analysis (CDA) were used to determine the need to use new literacies to teach science content area literacy. Increased use of digital technologies and a change in science content area pedagogy were explored.

On the Paradigm Shift of the Overall Urban Design in China

Facing a period of major change that is rarely seen in a century, China formulates the 14th Five-Year Plan and places emphasis on promoting high-quality development. In this context, the overall urban design has become a crucial and systematic tool for high-quality urban development. However, there are bottlenecks in the cognition of nature, content scope and transmission mechanisms of the current overall urban design in China. The paper interprets the emerging demands of the 14th Five-Year Plan on urban design in terms of new value-quality priority, new dynamic-space performance, new target-region coordination and new path-refined governance. Based on the new trend and appeal, the multi-dimensional thinking integrated with the major tasks of urban design are proposed accordingly, which is the biomass thinking in ecological, production and living element, the strategic thinking in spatial structure, the systematic thinking in the cityscape, the low-carbon thinking in urban form, the governance thinking in public space, the user thinking in design implementation. The paper explores the possibility of transforming the value thinking and technical system of urban design in China and provides a breakthrough path for the urban planning and design industry to better respond to the propositions of the country’s 14th Five-Year Plan.

Un Pavillon – Un Monument: The Modern Palace and the Case of the U.S. Embassy in Karachi, Pakistan (1955–59)

This paper investigates civic representation in mid-century diplomatic buildings through the case of the U.S. Embassy in Karachi (1955-59), Pakistan, designed by the Austrian-American architect Richard Neutra (1892-1970) and the American architect Robert Alexander (1907-92). Texts, magazines, and oral histories at that time highlighted the need for a new postwar expression of American governmental architecture, leaning toward modernization, technology, and monumentality. Descriptive, structural, and historical analyses of the U.S. Embassy in Karachi revealed the emergence of a new prototypical solution for postwar diplomatic buildings: the combination of one main orthogonal block, seen as a modern-day corps de logis, and a flanking arcuated pavilion, often organized in one or two stories. Although the U.S. Embassy relied on highly industrialized techniques and abstract images of social progress, archival work at the Neutra’s archives at the University of California, Los Angeles, revealed that much of this project was adapted to vernacular elements and traditional forms—such as the intriguing use of reinforced concrete barrel vaults.

‘Memory Mate’ as Boundary Object in Cancer Treatment for Patients with Dementia

This article is based on observation of a cross-disciplinary, cross-institutional team that worked on an intervention called ‘Memory Mate’ for use in a UK Cancer Centre. This aimed to improve treatment outcomes for patients who had comorbid dementia or other memory impairment. Comorbid patients present ambiguous, spoiled identities, problematising the boundaries of health specialisms and frames of understanding. Memory Mate is theorised as a boundary object facilitating service transformation by changing relations between oncology and mental health care practice. It crosses the boundaries between oncology and mental health. Its introduction signifies an important step in reconfiguring relations between the specialisms. As a boundary object, it contains parallel, even contesting worlds, with potential to enable an eventual synthesis of the double stigma of cancer and dementia. Memory Mate comprises physical things, such as an animation, but its principal value is in the interaction it initiates across disciplines and services. It supports evolution of practices to address a newly emergent challenge for health service provision, namely the cancer patient with comorbid dementia/cognitive impairment. Getting clinicians from different disciplines working together on a practical solution generates a dialogue that can shift professional identity and change the culture of practice.

School-Based Intervention for Academic Achievement: Targeting Cognitive, Motivational and Affective Factors

Outcome in any learning process should target three goals – propelling the underachiever’s engagement in the learning process, enhancing the drive to achieve, and modifying attitudes and beliefs in his/her capabilities. An intervention study with a three-pronged approach incorporating self-regulatory training targeting three categories of strategies – cognitive, metacognitive and motivational – was designed adopting the before and after control-experimental group design. The evaluation of the training process was based on pre- and post-intervention measures obtained through three indices of measurement – academic scores based on grades on school examinations and comprehension tests, affective variables scores and level of strategy use obtained through responses on scales and questionnaires, and content analysis of subjective responses to open-ended probes. The evaluation relied on three sources – student, teacher and parent. The t-test results for the experimental and control groups on the pre- and post-intervention measurements indicate a significant increase on comprehension tasks for the experimental group. Though statistically significant difference was not found on the school examination scores for the experimental group, there was considerable decline in performance for the control group. Analysis of covariance (ANCOVA) was applied on the scores obtained on affective variables, namely, self-esteem, personal achievement goals, personal ego goals, personal task goals, and locus of control. The experimental group showed increase in personal achievement goals and personal ego goals as compared to the control group. Responses given by the experimental group to the open-ended probes on causal attributions indicated a considerable shift from external to internal causes when moving from the pre- to post-intervention stage. ANCOVA results revealed significantly higher use of learning strategies inclusive of mental learning strategies, behavioral learning strategies, self-regulatory strategies, and an improvement in study orientation encompassing study habits and study attitudes among the experimental group students. Parents and teachers reported significant progressive transformation towards constructive engagement with study material and self-imposed regulation. The implications of this study are three-fold: firstly, strategies training (cognitive, metacognitive and motivational) should be embedded into daily classroom routine; secondly, scaffolding by teachers through activities based on curriculum will eventually enable students to rely more on their own judgements of effective strategy use; thirdly, enhanced confidence will radiate to the affective aspects with enduring effects on other domains of life as well. The cyclic nature of the interaction between utilizing one’s resources, managing effort and regulating emotions forms the foundation for academic achievement.

Cultivating Individuality and Equality in Education: Ideas on Respecting Dimensions of Diversity within the Classroom

This systematic literature review sought to explore the dimensions of diversity that can affect classroom learning. This review is significant as it can aid educators in reaching more of their diverse student population and creating supportive classrooms for teachers and students. For this study, peer-reviewed articles were found and compiled using Google Scholar. Key terms used in the search include student individuality, classroom equality, student development, teacher development, and teacher individuality. Relevant educational standards such as Common Core and Partnership for the 21st Century were also included as part of this review. Student and teacher individuality and equality is discussed as well as methods to grow both within educational settings. Embracing student and teacher individuality was found to be key as it may affect how each person interacts with given information. One method to grow individuality and equality in educational settings included drafting and employing revised teaching standards which include various Common Core and US State standards. Another was to use educational theories such as constructivism, cognitive learning, and Experiential Learning Theory. However, barriers to growing individuality, such as not acknowledging differences in a population’s dimensions of diversity, still exist. Studies found preserving the dimensions of diversity owned by both teachers and students yielded more positive and beneficial classroom experiences.

Quantifying the Second-Level Digital Divide on Sub-National Level

Digital divide, the gap in the access to the world of digital technologies and the socio-economic opportunities that they create is an important phenomenon of the XXI century. This gap may exist between countries, regions within a country or socio-demographic groups, creating the classes of “digital have and have nots”. While the 1st-level divide (the difference in opportunities to access the digital networks) was demonstrated to diminish with time, the issues of 2nd level divide (the difference in skills and usage of digital systems) and 3rd level divide (the difference in effects obtained from digital technology) may grow. The paper offers a systemic review of literature on the measurement of the digital divide, noting the certain conceptual stagnation due to the lack of effective instruments that would capture the complex nature of the phenomenon. As a result, many important concepts do not receive the empiric exploration they deserve. As a solution the paper suggests a composite Digital Life Index, that studies separately the digital supply and demand across seven independent dimensions providing for 14 subindices. The Index is based on Internet-borne data, a distinction from traditional research approaches that rely on official statistics or surveys. The application of the model to the study of the digital divide between Russian regions and between cities in China have brought promising results. The paper advances the existing methodological literature on the 2nd level digital divide and can also inform practical decision-making regarding the strategies of national and regional digital development.

Libretto Thematology in Rossini's Operas and Its Formation by the Composer

The present study examines the way Gioachino Rossini’s librettos are selected and formed demonstrating the evolutionary trajectory of the composer during his operatic career. Rossini, a dominant figure in the early 19th century Italian opera, is demanding in his choice of librettos and has a preference for subjects inspired by European literature, of his time or earlier. He begins his operatic career with farsae and operas buffae, but he mainly continues with operas seriae, to end it with a grand opera that conforms to the spirit of romanticism as manifested in Paris of his time. His farsae, operas buffae and comic operas in general are representative of the trends of the time: in some the irrational and the exaggeration prevail, in others the upheavals, others are semi-serious and emotional with a happy ending and others are comedies with more realistic characters, but usually the styles are mixed and complement each other. The stories that refer to his modern era unfold mocking human characters, beliefs attitudes and their expressions in every day habits, satirizing current affairs, presenting innovative elements in dramatic intervention and dealing with a variety of social and national issues. Count Ory, his final comic work, consists of a complex witty urban comic opera entwined with romantic sensitivity. The themes he chooses for his operas seriae are characterized by tragic passion, take place in the era of the Trojan War, the Roman Empire, the Middle Ages, and the Age of the Crusades and are set in Italy, England, Poland, Greece, Switzerland, Israel and Egypt. In his early works he sketches the characters remotely, objectively and with static, reflexive emotional expression and a happy ending. Then he continues with operas for the San Carlo Theater, which are characterized by experimentation and innovation to end up his Italian operatic career with the ostensibly backward but in fact tragic Semiramis followed in Paris by William Tell, his ultimate dramatic achievement. There are indirect references to burning issues of his era but the censorship of the time does not allow direct reference to topics that would upset the status quo. In addition, Rossini lives in a temporal period of peace after the Napoleonic Wars and by temperament he resists openly engaging in political strife. Furthermore, the need for survival necessitates the search for the more profitable contracts. In conclusion, Rossini, as a liberal personality, shapes his librettos without interruptions or setbacks, with ideas that come out after a lot of thought and a strong sense of purpose. He moves from the moral and aesthetic clarity of the classic tradition of his early works to a more elaborate and morally ambiguous romantic style in a moderate and hesitant way.

Recommended Practice for Experimental Evaluation of the Seepage Sensitivity Damage of Coalbed Methane Reservoirs

The coalbed methane (CBM) extraction industry (an unconventional energy source) has not established guidelines for experimental evaluation of sensitivity damage for coal samples. The existing experimental process of previous researches mainly followed the industry standard for conventional oil and gas reservoirs (CIS). However, the existing evaluation method ignores certain critical differences between CBM reservoirs and conventional reservoirs, which could inevitably result in an inaccurate evaluation of sensitivity damage and, eventually, poor decisions regarding the formulation of formation damage prevention measures. In this study, we propose improved experimental guidelines for evaluating seepage sensitivity damage of CBM reservoirs by leveraging on the shortcomings of the existing methods. The proposed method was established via a theoretical analysis of the main drawbacks of the existing methods and validated through comparative experiments. The results show that the proposed evaluation technique provided reliable experimental results that can better reflect actual reservoir conditions and correctly guide the future development of CBM reservoirs. This study is pioneering the research on the optimization of experimental parameters for efficient exploration and development of CBM reservoirs.

The Morphology and Meaning of the Pārs Based on the Linguistic Evolutions and Historical-Mythological Traditions

The morphology of most Persian words goes back to the Indo-European and Indo-Iranian periods. These words show the beliefs and views of the earliest people about their structure. It is also necessary to search for the vocabulary in the Indo-European and Indo-Iranian periods. During recent centuries, comparative linguistics and mythology have facilitated the common Indo-European lexicon to reconstruct. The Persians have been appeared in the Assyrian inscriptions and affected by the Mesopotamians. It is also worth paying attention to the cultural and linguistic exchanges with the Mesopotamian civilizations. This paper aims to show the morphology of Pārsa based on linguistic evolutions and historical-mythological traditions. The method of this study is also to reconstruct both morphology and the earliest form of Persia. Then, it is tried to find the most plausive meaning according to the historical-mythological traditions. In the end, the sickle or scythe is considered the most probable meaning for Pārsa.

Challenge of Net-Zero Carbon Construction and Measurement of Energy Consumption and Carbon Emission Reduction to Climate Change, Economy and Job Growths in Hong Kong and Australia

Under the Paris Agreement 2015, the countries committed to address and combat the climate change and its negative impacts and agree to the target of reducing the global greenhouse gas (GHG) emission substantially by limiting the global temperature to 2 0C above the pre-industrial level in this century. An international submit named “26th United Nations Climate Conference” (COP26) was held in Glasgow in 2021 with all committed countries agreed to finalize the outstanding element in Paris Agreement and Glasgow Climate Pact to keep 1.5 0C. In this paper, we will focus on the basic approach of waste strategy, recycling policy, circular economy strategy, net-zero strategy and sustainability strategy and the importance of the elements which affect the carbon emission, waste generation and energy conservation will be further reviewed with recommendation for future study.

Elegant: An Intuitive Software Tool for Interactive Learning of Power System Analysis

A common complaint from power system analysis students lies in the overly complex tools they need to learn and use just to simulate very basic systems or just to check the answers to power system calculations. The most basic power system studies are power-flow solutions and short-circuit calculations. This paper presents a simple tool with an intuitive interface to perform both these studies and assess its performance in comparison with existent commercial solutions. With this in mind, Elegant is a pure Python software tool for learning power system analysis developed for undergraduate and graduate students. It solves the power-flow problem by iterative numerical methods and calculates bolted short-circuit fault currents by modeling the network in the domain of symmetrical components. Elegant can be used with a user-friendly Graphical User Interface (GUI) and automatically generates human-readable reports of the simulation results. The tool is exemplified using a typical Brazilian regional system with 18 buses. This study performs a comparative experiment with 1 undergraduate and 4 graduate students who attempted the same problem using both Elegant and a commercial tool. It was found that Elegant significantly reduces the time and labor involved in basic power system simulations while still providing some insights into real power system designs.

Identifying Chaotic Architecture: Origins of Nonlinear Design Theory

Through the emergence of modern architecture, an aggressive desire for new design theories appeared through the works of architects and critics. The discourse of complexity and volumetric composition happened to be an important and controversial issue in the discipline of architecture which was discussed through a general point of view in Robert Venturi and Denise Scott Brown's book “Complexity and contradiction in architecture” in 1966, this paper attempts to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. Accordingly, we identify chaotic architecture as the correlation between chaos theory and the discipline of architecture, and as an independent nonlinear design theory with specific characteristics and properties.

Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music

Music is ubiquitous in human lives. Ever since the foetus hears the sound inside the mother’s womb and later upon birth the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than a mere entertainment. The intricate balance between music, education and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve the human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation) and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in its practice methods toward improvising the music have been discussed in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.

Florida’s Groundwater and Surface Water System Reliability in Terms of Climate Change and Sea-Level Rise

Florida is one of the most vulnerable states to natural disasters among the 50 states of the USA. The state exposed by tropical storms, hurricanes, storm surge, landslide, etc. Besides the mentioned natural phenomena, global warming, sea-level rise, and other anthropogenic environmental changes make a very complicated and unpredictable system for decision-makers. In this study, we tried to highlight the effects of climate change and sea-level rise on surface water and groundwater systems for three different geographical locations in Florida; Main Canal of Jacksonville Beach in the northeast of Florida adjacent to the Atlantic Ocean, Grace Lake in central Florida, far away from surrounded coastal line, and Mc Dill in Florida and adjacent to Tampa Bay and Mexican Gulf. An integrated hydrologic and hydraulic model was developed and simulated for all three cases, including surface water, groundwater, or a combination of both. For the case study of Main Canal-Jacksonville Beach, the investigation showed that a 76 cm sea-level rise in time horizon 2060 could increase the flow velocity of the tide cycle for the main canal's outlet and headwater. This case also revealed how the sea level rise could change the tide duration, potentially affecting the coastal ecosystem. As expected, sea-level rise can raise the groundwater level. Therefore, for the Mc Dill case, the effect of groundwater rise on soil storage and the performance of stormwater retention ponds is investigated. The study showed that sea-level rise increased the pond’s seasonal high water up to 40 cm by time horizon 2060. The reliability of the retention pond is dropped from 99% for the current condition to 54% for the future. The results also proved that the retention pond could not retain and infiltrate the designed treatment volume within 72 hours, which is a significant indication of increasing pollutants in the future. Grace Lake case study investigates the effects of climate change on groundwater recharge. This study showed that using the dynamically downscaled data of the groundwater recharge can decline up to 24 % by the mid-21st century. 

Digital Learning and Entrepreneurship Education: Changing Paradigms

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g. online entrepreneurship education courses and programs) and other digital tools (e.g. digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis

Fuzzy set and intuitionistic fuzzy set are dealing with the imprecision and uncertainty inherent in a complex decision problem. However, sometimes these theories are not sufficient to model indeterminate and inconsistent information encountered in real-life problems. To overcome this insufficiency, the neutrosophic set, which is useful in practical applications, is proposed, triangular neutrosophic numbers and trapezoidal neutrosophic numbers are examined, their definitions and applications are discussed. In this study, a decision making algorithm is developed using neutrosophic set processes and an application is given in fighter aircraft selection as an example of a decision making problem. The estimation of the fighter aircraft selection with the neutrosophic multiple criteria decision analysis method is examined.  

A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Energy Management System with Temperature Rise Prevention on Hybrid Ships

Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.